Article

North Bay uses condition assessment on forcemain

Gateway of The North City of North Bay

On one hand, it may seem like a waste of capital dollars if you perform a pipeline condition assessment and the final analysis turns up no leaks. Alternatively, you can also look at the no-leak report as a good news validation story, especially when using the information to help establish an asset management plan.

Such was the case for a city of 51,000 situated between the shores of lovely Lake Nipissing and Trout Lake in Northern Ontario.

In September 2016, the  City of North Bay (City) retained the services of Pure Technologies (Pure) to perform a two-phase condition assessment on the Marshall Avenue Force Main (MAFM). The MAFM is a critical 508mm (20-inch) asbestos cement pipeline that services approximately half the city, and transfers wastewater from the Marshal Avenue Pump Station to the North Bay Sewage Treatment Plant.

Aerial picture with sewer map

The City was interested in exploring technologies to help them better understand the actual condition of their force main in order to implement a comprehensive asset management program using the inspection data.

To assist in the assessment, Pure Technologies elected to first conduct transient pressure monitoring, followed by a SmartBall® inspection to acoustically identify and locate leaks and pockets of trapped gas along the pipeline.

Transient pressure monitoring helps understand structural integrity of the pipeline

First, transient pressure monitors were installed at the pump station discharge header. For approximately six weeks, the recorded pressure data was used to understand the operational and surge pressures within the force main and their impact on the structural integrity of the pipeline.

When pipe wall degradation is combined with surge pressures, the likelihood of pipe failure can be significantly increased.  Evaluation of the pump station operation, such as pump start-up mode, typical and peak flows, operating and surge pressures, and surge protection, can provide important information on the stress.

SmartBall with its controls and tools

SmartBall tool provides acoustic signature related leaks and gas pockets

While transient pressure data was collecting, Pure deployed its proprietary SmartBall technology, a multi-sensor tool used to detect and locate the acoustic signature related to leaks and gas pockets in pressurized pipelines. The tool has the ability to inspect long distances in a single run, and while the SmartBall is deployed, the pipeline remains in service, limiting disruption to customers.

Unlike traditional listening tools like correlators, which have limited success on large diameter pipes, the free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls inside the pipe, it can inspect every inch of the main to detect leaks and gas pockets.

From insertion to extraction, the SmartBall inspection took a little over four hours, with no unexpected events as anticipated during the planning stage.

SmartBall functionality chart

Results lead to effective management of finances and risk

Based on the inspection data, Pure analysts reported zero (0) anomalies characteristic of leaks, and 13 acoustic anomalies characteristic of pockets of trapped gas, mostly around air valves.  In particular, gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Gas pockets combined with pressure transients can have significant impact on the pipeline, as vacuum conditions may be created. This can cause cavitation at the gas pocket as the transient gas passes, increasing stress on the pipe wall and therefore increasing the risk of failure if the structural capacity has been compromised.

City considering adding more air valves to help expel collecting gas

Based on a hydraulic evaluation of the pipeline, structural fatigue was not a concern, although test pits were recommended to determine asbestos cement thickness and gas pocket mitigation using swabs also recommended. In the near term, the City is considering adding more air valves to the pipeline to help expel collecting gas.

Overall, the City of North Bay was pleased with the project results, as they were able to understand the overall condition of the pipeline and make an informed decision for capital improvements of the Marshall Avenue Force Main. The project demonstrates how the City uses actionable data to effectively manage their finances and risk, while continuing to provide the community with a safe and reliable delivery of wastewater.