Archives

pipe_diver

On Thursday May 17, thought-leaders, leading utilities, and other industry experts, came together for Xylem’s Modernizing Water Infrastructure Workshop in Laurel, MD. Like Infrastructure Week, the event served as a platform for innovators to connect, discuss, and inspire water industry professionals to solve the problems associated with managing water infrastructure. If you were unable to attend, here are some of the highlights of the day.

From Manure To Modern

The morning session focused on utilities, and began with a keynote presentation from industry visionary, George Hawkins, who provided an energetic analogy on how the manure crisis of the 1800s compares to our current water crisis. While the common person only saw the problem of horse manure, the engineers of the 1800s saw the potential for change and created the car, which eliminated the problem while increasing productivity and reducing costs. That’s what we, as an industry, need to focus on as we modernize water infrastructure — seeing the potential for greatness and improvement through innovation.

Hawkins went on to discuss how we report efficiency. If everything is measured in a productivity approach, seeking additional funding becomes easier. Money has gone farther than ever before in the water infrastructure industry because of the advancements in technology that allow us to work more efficiently and accurately. People are prepared to invest in something that matters to them, especially when they understand that the current monies are going further, and you can prove it. Listen to part of Hawkins’ presentation:

100 Years of Continuous Improvement

Following Hawkins’ passionate keynote address, we heard from Glen Diaz, Division Manager of Water/Wastewater Systems Assessment at WSSC. As WSSC (Washington Suburban Sanitary Commission) celebrates their 100-year anniversary, Diaz reflected on the advancements in technology through the years.

Even in the past 10 years, things have greatly improved in the water industry. Diaz cited the 66” water main break in Bethesda, MD in 2008 and how current technology can aid in preventing future incidents. Diaz went on to discuss how most PCCP failures are due to broken wires and how noisy pipes are typically problem pipes.

However, now, WSSC workers receive mobile alerts, through the implementation of Pure Technologies AFO system, as soon as wire breaks occur so they can address any cause for concern. This system has already helped WSSC avert 20 failure events to date, a $21 million dollar savings on the conservative side! See Diaz’s presentation here:

With Challenge, Comes Major Opportunity

After hearing from WSSC, we heard from Jody Caldwell, Asset Management Director for Great Lakes Water Authority (GLWA), on building an asset management program from the (under) ground up.

Caldwell began with an overview of some of the organizational challenges GLWA is experiencing being a relatively new utility. He talked about the process GLWA went through putting together a 10-year strategic roadmap focused on continuous improvement to overcome the challenges and build a utility for the future. Caldwell went on to discuss GLWA’s pipeline risk management strategy, which uses a quantitative, risk-based analysis to drive decisions. This tiered approach allows them to easily calculate their risk return on investment and ultimately, become a best-in-class pipeline management system. Catch the end of Caldwell’s presentation, as well as the Q&A session.

Extreme Preparation for Extreme Weather

After a brief networking break, there was a roundtable discussion that focused on how leading utilities dealt with the extreme weather conditions this past January. The roundtable featured (from left to right) Joseph Mantua, Deputy General Manager Operations at WSSC; Carlos A. Espinosa, Chief of the Office Of Asset Management at Baltimore City Department of Public Works; and Buddy Morgan, General Manager at Montgomery Water Works (Alabama). Who said the South doesn’t experience cold weather.

The discussion began with the question, “Were there particular pipe materials you found to be problematic during the extreme winter, and if so, what were they?” For the City of Montgomery, AL, cast iron mains had the most problems. Baltimore City was no different, reporting that 98% of the water main breaks were in cast iron pipes, the majority of which were 12” or smaller. WSSC confirmed the cast iron trend, with the majority of breaks occurring in 6 or 8 inch diameter pipes.

In order to prepare for next winter, the utilities agreed for the need to ensure that all their equipment is in working order ahead of time, and have conversations with their crews and contractors to make sure they’re prepared to respond, and recognize the need for additional support services and how to best utilize them. Additionally, the panel agreed that social media played a crucial role in real-time communications with customers, aiding them in being proactive with the media, and helping to communicate status updates. Watch the beginning portion of the roundtable discussion:

The discussion moved on to how to keep employees engaged during extreme weather conditions. Aside from the generous overtime benefits, WSSC brought hot meals to workers, while Alabama Water Works limited hours per week to 65 with 24 hours off before coming back. They also held celebratory cookouts once the weather warmed up.

Be Best-In-Class

After lunch, the afternoon sessions focused on technologies and management best practices. Pure’s very own Mike Higgins, Senior Vice President, Americas, talked about buried infrastructure philosophies utilities can use to manage their most valuable assets. Mike kicked-off his presentation by sharing statistics from the 2017 Infrastructure Report Card from the American Society of Civil Engineers (ASCE).

Following these eye-opening numbers, Higgins shared his insights on success for professionals in the water industry.
Key questions utilities need to answer include:

  • Why do you want to assess your pipeline?
  • What are the goals for your project or program?

 

Typically, the answers should focus on one or more of the following areas:

1) Averting pipeline failure
2) Reducing pipeline risk
3) Extending the life of an asset
4) Increasing sustainability
5) Optimizing CAPEX/TOTEX (capital/total expenditure)

Higgins then shared his secret recipe for the 10 key ingredients to be a best-in-class utility:
1) Focus on operations excellence
2) Coordinate with all key stakeholders
3) Perform necessary Public Relations
4) Create a clearly defined team across departments and disciplines
5) Always aspire towards total pipeline management
6) Prepare for emergencies, they will occur
7) Be opportunistic
8) Continue to innovate
9) Understand limitations of innovative approaches
10) Keep your boots on the ground (maximize the amount of inspected pipe)
 
He concluded his presentation talking about the importance of monitoring key performance indicators (KPIs) and keeping senior leadership engaged. Watch Higgins’ presentation:

The 4th Industrial Revolution

Richard Loeffler IV, Client Solutions Architect at Emnet, then reminded us that the number one criteria for where cities locate is the access to water. Loeffler also stated that we are in the midst of a 4th industrial revolution—IoT (Internet of Things) is changing the way we live, work, and play, and is transforming the fundamental economic cost structure of water and related civic works.

He used the example of South Bend, IN, to illustrate just how effective IoT and RTDSS (real-time decision support systems) can be. Ultimately, it’s all about environmental stewardship — it’s not just about saving money, but about doing the right thing for the world that we live in. View Loeffler’s presentation:

Smart Water

Following Loeffler’s informative presentation, Bridget Berardinelli, VP Product Management And Continuous Improvement for Xylem, stated how smart meters and applying analytics can help utilities generate real results. Berardinelli began by explaining how Sensus develops advanced technology solutions that enable the intelligent use of critical resources.

She covered Advanced Metering Infrastructure (AMI) and explained how to leverage it in order to increase operational efficiencies and improve scalability and flexibility. By delivering machine learning and analytics using a programmatic approach, Sensus is able to inform operational interventions that transform how water utilities operate. View her presentation:

Our Newest Solution

Concluding Berardinelli’s presentation, we heard from Pure Technologies Area Regional Manager, Susan Donnally, on how to manage large diameter water transmission mains. She began her presentation with a discussion on pipeline risk prioritization, stating that using data to drive decisions is a quintessential part of moving towards a proactive asset management approach. She then dove into why pipes fail; noting that age alone is a poor indicator of pipe condition. While there is no singular technology that can identify all of the indicators of pipe deterioration, a holistic, risk-based approach can help.

Donnally then moved on to highlight some of Pure’s latest technology innovations:

  • SmartBall® – in addition to leak and gas pocket detection, the tool now provides mapping, which combines data collected during an inspection with known, aboveground locations and pipeline drawings to create a field-generated GIS map of a pipeline.
  • PipeDiver® – Pure’s free-swimming condition assessment tool is now available with video and can easily correlate the data you’re getting from electromagnetics with actual footage.

 

Additionally, Donnally had a huge reveal! She introduced Pure’s newest PipeDiver solution, the PipeDiver UltraTM (currently in the beta testing phase with a couple of clients), which features high-resolution wall condition information for metallic pipes, such as cast iron, ductile iron, and steel, and is as easy to deploy as the existing PipeDiver. Watch her presentation:

You’re Not Going to Start with Perfection

Vice President of PureAnalytics, Travis Wagner, gave the final presentation of the day on managing distribution systems.

He truly engaged the audience by asking attendees to raise their hands if:

  • They saw a need or value in a pipeline renewal program
  • They agreed that a 10-20% efficiency in renewal programs is OK
  • They thought customer affordability was an issue
  • They had trouble with retirements and recruiting

 
Not surprisingly, most hands were raised! From there, Wagner went on to urge everyone to update their approach.

Utilities need to start asking themselves the following questions:

  • What is the current state of my assets?
  • What is my required level of service?
  • Which assets are critical to sustained performance?
  • What are my best O&M and CIP investment strategies?
  • What is my best long-term funding strategy?

 
Wagner concluded this portion of the presentation with a quote that all utilities should follow: “You’re not going to start with perfection, the goal is to build toward becoming better.”

Next, Wagner moved on to discuss risk management, consequence probability analysis, data collection, and risk mitigation. It was truly an eye-opening presentation:

The day concluded with demonstrations of all the latest technology available to utilities, including a 108” PipeDiver, SoundPrint® AFO system, Sensus meters, Visenti software demos, not to mention some great networking.

Want to learn more about our Modernizing Water Infrastructure Workshop? Check out #H2018Workshop on Facebook, LinkedIn, and Twitter.

 

While metallic rising mains have been historically difficult to manage, a risk-based approach increases confidence in the condition of the pipeline.

Nothing grabs headline news like the failure of a rising main, which can be extremely damaging to the environment and harmful to a utility’s reputation.

Historically, wastewater rising mains have been difficult to manage, especially those made with ferrous materials, where the failure method is slow when compared to concrete pressure pipe. As well, sewer rising mains have special operational challenges that don’t apply to gravity sewer mains as they typically cannot be taken out of service for inspection, and due to the presence of solids in the fluid, rising mains represent a far more abrasive environment than potable systems such that assessment methods for water mains may not be applicable.

The presence of pockets increases the potential of corrosion in metallic pipes.

Gas pockets are of significant concern in rising mains.

The primary failure mechanism of ferrous rising mains is due to internal corrosion. Gas pockets are of significant concern in rising mains, as concentrations of hydrogen sulfide gas within wastewater can be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s wall.

Therefore, a first step in assessing rising main condition should be the identification of gas pocket locations within the pipeline.

Pure Technologies has performed an analysis of rising mains inspected using acoustic based technologies in order to better characterize the frequency and location of gas pockets. Based on the analysis, it was found that 72% of gas pockets were not at known high points or air release valves, therefore, the most precise way to identify gas pockets within a rising main is through the implementation of inline acoustic inspection technologies.

The collection of gas pocket locations alone will not indicate the condition of the pipeline, but instead identifies locations where an increase in corrosion potential is observed. To ascertain the true condition of a pressure pipe, higher resolution electromagnetic technologies are required. These technologies measure pipe wall thickness in ferrous materials and broken wire or bar wraps in concrete pressure pipe.

Once the condition data is collected, advanced analytics can be applied to estimate the pipeline’s remaining useful life.

“Previous analyses involved straight-line assumptions – comparing the pipe wall thickness at installation against what it is today. However this doesn’t give an accurate picture of how pipes degrade…by using statistical modeling we can develop a more predictable degradation rate based off of over 14,000 miles of inspection data Pure has collected over the past 30+ years.”

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Desktop studies are not always reliable.

While often the first thought is to replace the aging wastewater assets based on factors such as age and failure history, this option makes neither logical nor financial sense. With so many miles of buried pipelines and such limited capital budgets, utilities don’t have hundreds of millions to spend on replacing pipelines which still have remaining useful life.

At Pure Technologies, we believe there is a better way. A more feasible approach to ensuring the safe operation of rising mains is to undertake a risk-based approach to manage their operation. A risk-based approach will provide decision intelligence on which assets require rehabilitation or replacement to extend their useful life. Or which assets can be left alone.

Our approach is to help utilities evaluate the current state of their buried infrastructure and provide them with high confidence condition and operating data.   We then couple this with our years of extensive experience and project history (more than 12,000 kilometers of pressure pipe assessment) to provide utilities with actionable information, which allows them to make informed decisions as to the management of these critical assets.

Value of a risk-based approach to manage rising mains.

Utilities that embrace a risk-based approach to manage their rising main inventory have found that on average they can safely manage their rising mains for roughly 5 to 15 percent of the replacement cost. This pragmatic approach focuses on providing real condition data through assessment, which can be used to selectively renew isolated areas of damaged pipe in lieu of capital replacement.

Four steps to a risk-based approach.

At Pure, we recommend a risk-based approach to manage wastewater rising mains by focusing on four main areas:

  • Preliminary Risk Analysis
  • Internal Corrosion Potential Surveys using Inline Acoustics
  • Pipe Wall Assessment using Advanced Technologies
  • Condition Data Analysis and Advanced Risk Assessment

Most common reasons for pipeline failure.

Preliminary analysis.

Preliminary analysis includes collecting the right data to develop a prioritized plan for assessment, including the selection of appropriate technologies. To help make preliminary decisions, Pure collects all available information to understand the history of the pipeline and the likely failure modes. The data analysis will provide an understanding of the construction and context of the pipeline. Data of interest typically includes pipe characteristics, installation factors, environmental and performance-related data, operational data, and failure data.

Acoustic-based SmartBall® tool locates leaks and gas pockets

Acoustic-based SmartBall® tool used to locate leaks and gas pockets.

Sahara is an inline tethered tool that can locate leaks and gas pockets.

Internal corrosion potential survey.

An internal corrosion potential survey uses inline tools to locate gas pockets that can increase the potential for corrosion and eventual breakdown of the pipe wall. Pure Technologies typically deploys its acoustic-based SmartBall® leak and gas detection tool, as well as its tethered Sahara® leak and gas pocket detection platform to locate gas pockets in pressurized lines of all materials.

Pipe wall assessment.

While the presence of gas pockets may indicate areas of potential concern, it will not give a quantifiable answer as to the structural life of the pipe.

Pipe wall assessment is completed using a variety of technology solutions to identify defects and deterioration of the pipe wall in a variety of pipe materials. For pipe wall assessment of metallic rising mains, common internal electromagnetic technologies include the PipeWalker® and PureRobotics® platforms, as well as the free-swimming 24-detector PipeDiver® assessment tool, developed to identify electromagnetic anomalies indicating pipe wall loss.

PipeDiver® assessment tool, identifies electromagnetic anomalies indicating pipe wall loss.

Condition assessment analysis.

Condition data analysis and risk assessment evaluates how to safely renew or extend the life of rising mains. The risk evaluation considers not only the probability of failure (condition) of the rising main based on inspection data, but also the consequence of failure in order to make sound engineering decisions.

Understanding the risk of the pipeline is an important step in selecting and justifying the appropriate condition assessment methods. As the risk of the asset increases, the value of using high-resolution comprehensive assessment techniques increases. Higher resolution data results in more confident decision making, and would justify and prioritize the application of assessment techniques.

Diagnostic analytics helps utilities move risk assessment forward.

In the past, inspections were done, the data analysed, and the results passed on to the utility. Pure Technologies now offers a more holistic program of diagnostic analytics. This includes analysis of what caused the corrosion problem within the pipe wall, what the impact the corrosion has on the life of the pipeline, and a prescriptive analysis of how it needs to be repaired or rehabilitated.

The next step gathering momentum? Predictive analysis to elongate service life.

While metallic force mains have been historically difficult to manage, a risk-based approach increases confidence in the condition of the pipeline.

After the Clean Water Act of the 70s required control of wastewater discharge, an increase in force main construction and management across the country was observed. As these assets are now approaching 50 years in age, reducing the risk of failure has become a major regulatory priority. Nothing grabs headline news like the failure of a force main, which can be extremely damaging to the environment and harmful to a utility’s reputation.

Historically, wastewater force mains have been difficult to manage, especially those made with ferrous materials, where the failure method is slow when compared to concrete pressure pipe.

As well, pressurized sewer mains have special operational challenges that don’t apply to gravity sewer mains as they typically cannot be taken out of service for inspection, and due to the presence of solids in the fluid, force mains represent a far more abrasive environment than potable systems such that assessment methods for water mains may not be applicable.

The presence of gas pockets increases the potential of corrosion in metallic pipes.

Gas pockets are of significant concern in force mains.

The primary failure mechanism of ferrous force mains is due to internal corrosion. Gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater can be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s wall.

Therefore, a first step in assessing force main condition should be the identification of gas pocket locations within the pipeline.

Pure Technologies has performed an analysis of force mains inspected using acoustic based technologies in order to better characterize the frequency and location of gas pockets. Based on the analysis, it was found that 72% of gas pockets were not at known high points or air release valves, therefore, the most precise way to identify gas pockets within a force main is through the implementation of inline acoustic inspection technologies.

The collection of gas pocket locations alone will not indicate the condition of the pipeline, but instead identifies locations where an increase in corrosion potential is observed. To ascertain the true condition of a pressure pipe, higher resolution electromagnetic technologies are required. These technologies measure pipe wall thickness in ferrous materials and broken wire or bar wraps in concrete pressure pipe.

Once the condition data is collected, advanced analytics can be applied to estimate the pipeline’s remaining useful life.

“Previous analyses involved straight-line assumptions – comparing the pipe wall thickness at installation against what it is today. However this doesn’t give an accurate picture of how pipes degrade…by using statistical modeling we can develop a more predictable degradation rate based off of over 14,000 miles of inspection data Pure has collected over the past 30+ years.”

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Desktop studies are not always reliable.

While often the first thought is to replace the aging wastewater assets based on factors such as age and failure history, this option makes neither logical nor financial sense. With so many miles of buried pipelines and such limited capital budgets, utilities don’t have hundreds of millions to spend on replacing pipelines which still have remaining useful life.

At Pure Technologies, we believe there is a better way. A more feasible approach to ensuring the safe operation of force mains is to undertake a risk-based approach to manage their operation. A risk-based approach will provide decision intelligence on which assets require rehabilitation or replacement to extend their useful life. Or which assets can be left alone.

Our approach is to help utilities evaluate the current state of their buried infrastructure and provide them with high confidence condition and operating data.   We then couple this with our years of extensive experience and project history (more than 12,000 kilometers of pressure pipe assessment) to provide utilities with actionable information, which allows them to make informed decisions as to the management of these critical assets.

The value of a risk-based approach to manage force mains.

Utilities that embrace a risk-based approach to manage their force main inventory have found that on average they can safely manage their force mains for roughly 5 to 15 percent of the replacement cost. This pragmatic approach focuses on providing real condition data through assessment, which can be used to selectively renew isolated areas of damaged pipe in lieu of capital replacement.

At Pure, we recommend a risk-based approach to manage wastewater force mains by focusing on four main areas:

  • Preliminary Risk Analysis
  • Internal Corrosion Potential Surveys using Inline Acoustics
  • Pipe Wall Assessment using Advanced Technologies
  • Condition Data Analysis and Advanced Risk Assessment

Some of the common reasons leading to failure on ferrous pipes.

Preliminary Risk Analysis

Preliminary analysis includes collecting the right data to develop a prioritized plan for assessment, including the selection of appropriate technologies. To help make preliminary decisions, Pure collects all available information to understand the history of the pipeline and the likely failure modes.

The data analysis will provide an understanding of the construction and context of the pipeline. Data of interest typically includes pipe characteristics, installation factors, environmental and performance-related data, operational data, and failure data.

Acoutic-based SmartBall® tool locates leaks and gas pockets

Acoustic-based SmartBall® tool locates leaks and gas pockets.

Sahara is an inline tethered tool used to locate leaks and gas pockets in pressurized lines.

Internal Corrosion Potential Survey.

An internal corrosion potential survey uses inline tools to locate gas pockets that can increase the potential for corrosion and eventual breakdown of the pipe wall. Pure Technologies typically deploys its acoustic-based SmartBall® leak and gas detection tool, as well as its tethered Sahara® leak and gas pocket detection platform to locate gas pockets in pressurized lines of all materials.

Pipe Wall Assessment.

While the presence of gas pockets may indicate areas of potential concern, it will not give a quantifiable answer as to the structural life of the pipe.

Pipe wall assessment is completed using a variety of technology solutions to identify defects and deterioration of the pipe wall in a variety of pipe materials. For pipe wall assessment of metallic force mains, common internal electromagnetic technologies include the PipeWalker® and PureRobotics® platforms, as well as the free-swimming 24-detector PipeDiver® assessment tool, developed to identify electromagnetic anomalies indicating pipe wall loss.

PipeDiver® assessment tool identifies electromagnetic anomalies indicating pipe wall loss.

Condition Assessment Analysis.

Condition data analysis and risk assessment evaluates how to safely renew or extend the life of force mains. The risk evaluation considers not only the probability of failure (condition) of the force main based on inspection data, but also the consequence of failure in order to make sound engineering decisions.

Understanding the risk of the pipeline is an important step in selecting and justifying the appropriate condition assessment methods. As the risk of the asset increases, the value of using high-resolution comprehensive assessment techniques increases. Higher resolution data results in more confident decision making, and would justify and prioritize the application of assessment techniques.

Diagnostic analytics helps utilities move risk assessment forward.

In the past, inspections were done, the data analysed, and the results passed on to the utility. Pure Technologies now offers a more holistic program of diagnostic analytics. This includes analysis of what caused the corrosion problem within the pipe wall, what the impact the corrosion has on the life of the pipeline, and a prescriptive analysis of how it needs to be repaired or rehabilitated.

The next step gathering momentum? Predictive analysis to elongate service life.

 

Case Study

Hutt City’s main outfall pipeline (MOP) is one of its most critical assets, taking treated wastewater from the Seaview treatment plant to the outfall at Pencarrow Head. The MOP is 18 kilometres long and has an average flow is about 550 litres per second. It was commissioned in 1962 and has an expected life of about 60 years.

Project Details

Services
Assess and Address®Technology Driven Pipeline Solutions
Electromagnetic Inspection
SmartBall® Leak and Gas Pocket Detection
3D Finite Element Analysis and Structural Modelling
Timing
2007- ongoing
Pipe Material
PCCP
Inspection Length
18 km (11 miles)
Diameter
1295mm (50-inch)
Transmission Type
Treated Wastewater

Project Highlights

EM inspection showed 354 of 4,662 pipe sections with some distress

92% of Hutt City’s main outfall pipeline had no deterioration at all

Hutt City was able to extend the life of the critical asset through proactive pipeline management

Challenge

Monitoring the condition of underground assets is a major challenge; much of the New Zealand’s infrastructure was constructed more than 60 years ago and is beginning to reach the end of its design life. While councils search for solutions to manage infrastructure, there is increasing public pressure to minimise rates and improve environmental performance.

Over time, Hutt City’s MOP has showed signs of deterioration, culminating with one pipe section failing catastrophically during normal operation. While replacing the ageing MOP is one solution, it is very difficult and expensive to complete. While the main has a replacement value of $60 million, the costs associated with replacement would likely be much higher due to the logistical challenges associated with constructing a new main.

Solution

In May 2013, Hutt City Council and Hutt Valley Water Services contracted MWH Global to assess the possibility of repairing or replacing of the MOP. In order to complete a comprehensive condition assessment of the main, MWH contracted Pure Technologies, a Calgary-based company.

In order to fully understand the condition of an asset, it is important to use a variety of solutions that identify different aspects of deterioration. This approach is called Assess and Address®, which focuses on identifying and locating isolated areas of distress along a pipeline for renewal. Through this approach, Hutt City can avoid replacing the entire MOP – which is challenging and costly – while increasing its reliability and extending its useful life. Pure used multiple solutions for to assess the MOP for leaks, gas pockets, and structural deterioration. The SmartBall® tool was used to identify leaks and pockets of trapped gas, as well as validate the results of the electromagnetic (EM) inspection. The tool is a free-swimming and measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines.

To identify structural deterioration, electromagnetic technology was used on the PipeRider platform in the dewatered pipeline. Once calibrated above the ground using spare pipe sections – with one of the pipes having some wires exposed and cut for the calibration – the bike was disassembled and placed in one end of the pipeline. The inspection was completed by generating an eddy current and measuring the signal as it conducts through the reinforcing steel within the concrete pipe wall as the tool traverses the pipeline. In Prestressed Concrete Pipe (PCP), the reinforcing steel wires are the main structural component. As these wires begin to deteriorate, specific pipe sections become structurally weaker and are more likely to fail.

Upon completion of the inspection, Pure performed 3D Finite Element Analysis and Structural Modelling on specific sections of the MOP. This process determines how the specific pipe material will perform under different operating conditions, which will guide Hutt City on how to safely operate its main to prevent pipe failures.

This analysis also provides an estimated remaining useful life for the asset, which aids in the development of re-inspection and replacement planning.  

Results

By managing the MOP in favour of replacement, Hutt City was able to determine that one of its most critical assets had remaining useful life. This prevented a very expensive and challenging replacement project, allowed for the deferral and redeployment of capital to other projects.

The data collected and subsequent structural analysis provided an understanding of the condition of the pipe’s main structural component while being non-destructive to the pipe itself. In total, 8 percent of pipe sections had some level of deterioration (354 of 4,622), meaning a complete replacement was unnecessary and the asset has remaining useful life.

By managing its critical infrastructure, Hutt City demonstrated its commitment to providing safe, reliable and sustainable service while ensuring that capital works budget is efficiently and responsibly allocated.

It’s fantastic we’re able to use this world-class technology in our city and benefit from the advanced results it can give us to help plan for the future.

Bruce Sherlock

General Manager, Hutt Valley Water Services

Case Study

In early 2015, Pure Technologies (Pure) conducted a condition assessment of Pipeline No. 1 owned and operated by The City of Tacoma (Tacoma Water), as part of their proactive asset management program. Pipeline No. 1 is a critical link in Tacoma’s transmission system, conveying up to 72 MGD of potable water over a 26-mile stretch to the McMillin Reservoir. Tacoma Water provides water service to more than 300,000 residents throughout Pierce and King Counties in Washington.

While the critical pipeline has had previous condition assessment and repairs on targeted sections, the goal of the latest survey was to provide Tacoma Water with detailed assessment information to determine future repair, rehabilitation and re-inspection strategies.

Project Details

Services
PureEM™ manned electromagnetic inspection

Handheld ultrasonic thickness testing

Structural engineering analysis using 3-dimensional nonlinear finite element analysis (FEA)

Remaining useful life projections using Monte Carlo simulation

Timing
48 Hours
Pipe Material
Welded Steel
Inspection Length
917 feet (279 meters)
Diameter
48-52 inches
Transmission Type
Water

Project Highlights

Survey covered 917 feet and spanned 125 pipes

12 pipes identified with electromagnetic anomalies

Defects identified ranged from 15 to 35 percent wall loss

Inspection deployed 48-detector electromagnetic tool

Challenge

By the end of 2013, Tacoma had repaired approximately 15 leaks at 3 locations along the section of Pipeline No. 1 located near Boise Creek. In order to investigate this section of pipeline further, Tacoma decided to excavate the pipe in select locations to observe the condition of the pipeline.

Several areas with minor pitting were identified during the investigation. Due to the critical nature of this pipeline, Tacoma decided to take further action on the main and considered a replacement project.  However, before proceeding, Tacoma wanted to validate the need to replace this section of pipe.

As a result, a comprehensive condition assessment of the main was performed to confirm its condition before initiating an expensive and disruptive replacement project. Owing to the criticality of the line, Pure had only 48 hours to conduct the non-destructive condition assessment, using its proprietary electromagnetic technology (PureEM™) on just over 900 feet of pipe.

Solution

Assessing the condition of metallic pipelines is a challenging task best performed using a combination of assessment methodologies, engineering science and experiential judgment. Pure’s PureEM electromagnetic tool was used to evaluate the condition of the pipe wall and identify localized areas of wall loss. The significance of the results were evaluated through structural engineering, and long-term recommendations were made based on statistical modeling and remaining useful life projections.

As the pipeline could only be taken out of service for 48 hours, this required careful planning and extensive tool preparation. The PureEM tool was inserted through an existing manhole access and assembled in the pipe. During the inspection, technicians gathered electromagnetic data, numbered the pipe, and took detailed notes on the internal visual condition of the pipe. UT thickness measurements were also collected on the pipe in several areas.

A pre-inspection calibration of the PureEM tool allowed for more precise quantification of the defect identified through the EM inspection. This involved destructive testing on an above-ground 52-inch welded steel pipe of similar vintage to calibrate the EM signal changes for this particular type of pipe.

Following the inspections, Pure’s structural engineers used finite element modeling to evaluate the significance of the defect identified. Finally, a Monte-Carlo simulation was employed to estimate the pipe’s remaining useful life.

Results

Analysis of the electromagnetic data obtained during the inspection determined that of the 125 pipes surveyed, 12 pipes had electromagnetic anomalies consistent with wall loss ranging from 15 percent to 35 percent.

The results of the structural analysis indicate that the internal stresses in the subject pipeline are very low compared to the structural capacity of the pipe. None of the detected anomalies are at or near a point of concern, and the pipeline can be operated without immediate rehabilitation.

With the remaining useful life estimated at the pipeline operating without significant risk of structural failure in the next 30 to 50 years, Tacoma Water now has data-driven confidence in the short and long-term management of Pipeline No. 1.

As a result of Pure’s Assess and Address® approach, the City of Tacoma avoided near-term replacement of the main, which was estimated between US$2 to 3 million.

Quote

“With the remaining useful life estimated at the pipeline operating without significant risk of structural failure in the next 30 to 50 years, Tacoma Water now has data-driven confidence in the short and long-term management of Pipeline No. 1.  As a result of Pure’s Assess and Address® approach, the City of Tacoma avoided near-term replacement of the main, which was estimated between US$2 to 3 million.”