Archives

Video

SmartBall® Inline Free-Swimming Pipeline Inspection Platform

The SmartBall platform is a free-swimming inspection tool used to detect leaks and gas pockets and map pipeline networks. This platform assesses pressurized water and wastewater pipelines in a single deployment, without disrupting regular service. The SmartBall platform provides utilities with pipeline condition data to make informed rehabilitation and management decisions on a pipe-by-pipe basis.

Video

GLWA implements proactive condition assessment on their transmission system

Sue McCormick, CEO for Great Lakes Water Authority, talks about how a proactive condition assessment program on their transmission systems will allow them to significantly reduce the investment needed to improve their system while avoiding breaks and unscheduled repairs that greatly affect their customers.

Video

Helping the city of Houston extend capital dollars through force main condition assessment

Robert Castillo from Omega Engineers talks about how using condition assessment technologies (SmartBall and PipeDiver) will help the city of Houston extend the capital improvement dollars by identifying and planning repairs of the city’s force main network.

With advancements in technology and a willingness to develop proactive pipeline integrity programs, utilities can successfully reduce failures, mitigate risk, reduce capital expenditures, and increase confidence in the overall operation of their force mains.

New standards of best practice for force main management involve a variety of methods and technologies to provide data and information with which to make decisions. Utilities can now often perform a detailed condition assessment while the force main remains in service.

There is no “one-size-fits-all” way of assessing force mains. Any approach should be tailored to risk tolerance, material, diameter and past failure history. Savvy utility managers are turning to programs that reduce damage to assets, prioritize investment to minimize community impact of asset failure, and reduce the consequence of failure by enabling system control.

This white paper will highlight:

  • how to develop a risk-based program
  • the most common modes of failure for force mains
  • how to define which of the three approaches to proactively assessing force mains best fits your goals and risk-tolerance
  • how utilities are finding success using these approaches to: prevent failures, reduce capital expenditures, mitigate risk, optimize budget allocation, and increase confidence and level of service.

Case Study

The Champlain Water District utilized a variety of methods, including high-resolution inline leak and air pocket inspection, transient pressure monitoring (TPM), and a structural design check to ensure a critical transmission pipe’s design was sufficient for current operational conditions.

Champlain Water District (CWD) is an award-winning regional municipal organization that supplies drinking water to 12 municipal water systems in Vermont. As the largest water supplier in the state, CWD serves approximately 75,000 residential, commercial and industrial users. CWD draws water from Lake Champlain, and three high-value water transmission mains supply water to the user municipalities. When evidence of corrosion-related breaks was revealed in nearby distribution mains, CWD became concerned that a critical metallic water main in their system could be next.

THE CHALLENGE

After conducting their own risk prioritization plan, Joe Duncan, Chief Engineer for CWD, and his team kept with the proactive mindset and began a transmission main asset management program.

While the transmission system is relatively “young” and had no real break history, visual feedback from crews showed distribution mains in the vicinity of the transmission mains were experiencing corrosion-related breaks and in some instances looking like “Swiss cheese”. Due to the high importance of the transmission pipeline, CWD wanted to understand its condition and forestall potential corrosion issues.

What solutions did Xylem and Champlain Water District come up with to solve this challenge? Find out and explore the results we achieved together by downloading the full case study below.

VIDEO CASE STUDY

Project Highlights

Design check confirmed that the pipe design was sufficient for current loading

Acoustic monitoring identified no leaks or gas pockets

Transient monitoring revealed no harmful pressure surges

Anticipated repair funding was re-allocated to other capital work projects

Project Details

Solutions
SmartBall acoustic leak detection
Transient pressure monitoring
Strucutral analysis
Pipe Material
Ductile Iron (DIP)
Inspection Length
1.8 miles (2.9 km)
Diameter
24 inches (600mm)
Transmission Type
Water

YOU MAY ALSO BE INTERESTED IN

Whitepaper:
Metallic Pipeline Condition Assessment

Today, new advancements in technologies and data analytics are helping utilities build asset management programs using a risk-based approach to pipeline condition assessment with the lowest financial impact.

There is no one-size-fits-all approach to assessing metallic pipelines. An approach should be tailored within the context of your risk tolerance while taking into consideration the material, diameter, and past failure history. Many different methods and technologies can be combined to provide data and information to make decisions and prioritize pipelines. The approach can range from do-nothing to a full in-line inspection making targeted repairs and be progressive in nature.

This white paper will highlight:

  • how to develop a risk-based program
  • how to define which of the three approaches to assessing metallic pipe best fits your goals and risk-tolerance
  • how other utilities are finding success using these approaches to: extend remaining useful life, optimize capital expenditures, prevent failures, and increase confidence and level of service.

pipe_diver

On Thursday May 17, thought-leaders, leading utilities, and other industry experts, came together for Xylem’s Modernizing Water Infrastructure Workshop in Laurel, MD. Like Infrastructure Week, the event served as a platform for innovators to connect, discuss, and inspire water industry professionals to solve the problems associated with managing water infrastructure. If you were unable to attend, here are some of the highlights of the day.

From Manure To Modern

The morning session focused on utilities, and began with a keynote presentation from industry visionary, George Hawkins, who provided an energetic analogy on how the manure crisis of the 1800s compares to our current water crisis. While the common person only saw the problem of horse manure, the engineers of the 1800s saw the potential for change and created the car, which eliminated the problem while increasing productivity and reducing costs. That’s what we, as an industry, need to focus on as we modernize water infrastructure — seeing the potential for greatness and improvement through innovation.

Hawkins went on to discuss how we report efficiency. If everything is measured in a productivity approach, seeking additional funding becomes easier. Money has gone farther than ever before in the water infrastructure industry because of the advancements in technology that allow us to work more efficiently and accurately. People are prepared to invest in something that matters to them, especially when they understand that the current monies are going further, and you can prove it. Listen to part of Hawkins’ presentation:

100 Years of Continuous Improvement

Following Hawkins’ passionate keynote address, we heard from Glen Diaz, Division Manager of Water/Wastewater Systems Assessment at WSSC. As WSSC (Washington Suburban Sanitary Commission) celebrates their 100-year anniversary, Diaz reflected on the advancements in technology through the years.

Even in the past 10 years, things have greatly improved in the water industry. Diaz cited the 66” water main break in Bethesda, MD in 2008 and how current technology can aid in preventing future incidents. Diaz went on to discuss how most PCCP failures are due to broken wires and how noisy pipes are typically problem pipes.

However, now, WSSC workers receive mobile alerts, through the implementation of Pure Technologies AFO system, as soon as wire breaks occur so they can address any cause for concern. This system has already helped WSSC avert 20 failure events to date, a $21 million dollar savings on the conservative side! See Diaz’s presentation here:

With Challenge, Comes Major Opportunity

After hearing from WSSC, we heard from Jody Caldwell, Asset Management Director for Great Lakes Water Authority (GLWA), on building an asset management program from the (under) ground up.

Caldwell began with an overview of some of the organizational challenges GLWA is experiencing being a relatively new utility. He talked about the process GLWA went through putting together a 10-year strategic roadmap focused on continuous improvement to overcome the challenges and build a utility for the future. Caldwell went on to discuss GLWA’s pipeline risk management strategy, which uses a quantitative, risk-based analysis to drive decisions. This tiered approach allows them to easily calculate their risk return on investment and ultimately, become a best-in-class pipeline management system. Catch the end of Caldwell’s presentation, as well as the Q&A session.

Extreme Preparation for Extreme Weather

After a brief networking break, there was a roundtable discussion that focused on how leading utilities dealt with the extreme weather conditions this past January. The roundtable featured (from left to right) Joseph Mantua, Deputy General Manager Operations at WSSC; Carlos A. Espinosa, Chief of the Office Of Asset Management at Baltimore City Department of Public Works; and Buddy Morgan, General Manager at Montgomery Water Works (Alabama). Who said the South doesn’t experience cold weather.

The discussion began with the question, “Were there particular pipe materials you found to be problematic during the extreme winter, and if so, what were they?” For the City of Montgomery, AL, cast iron mains had the most problems. Baltimore City was no different, reporting that 98% of the water main breaks were in cast iron pipes, the majority of which were 12” or smaller. WSSC confirmed the cast iron trend, with the majority of breaks occurring in 6 or 8 inch diameter pipes.

In order to prepare for next winter, the utilities agreed for the need to ensure that all their equipment is in working order ahead of time, and have conversations with their crews and contractors to make sure they’re prepared to respond, and recognize the need for additional support services and how to best utilize them. Additionally, the panel agreed that social media played a crucial role in real-time communications with customers, aiding them in being proactive with the media, and helping to communicate status updates. Watch the beginning portion of the roundtable discussion:

The discussion moved on to how to keep employees engaged during extreme weather conditions. Aside from the generous overtime benefits, WSSC brought hot meals to workers, while Alabama Water Works limited hours per week to 65 with 24 hours off before coming back. They also held celebratory cookouts once the weather warmed up.

Be Best-In-Class

After lunch, the afternoon sessions focused on technologies and management best practices. Pure’s very own Mike Higgins, Senior Vice President, Americas, talked about buried infrastructure philosophies utilities can use to manage their most valuable assets. Mike kicked-off his presentation by sharing statistics from the 2017 Infrastructure Report Card from the American Society of Civil Engineers (ASCE).

Following these eye-opening numbers, Higgins shared his insights on success for professionals in the water industry.
Key questions utilities need to answer include:

  • Why do you want to assess your pipeline?
  • What are the goals for your project or program?

 

Typically, the answers should focus on one or more of the following areas:

1) Averting pipeline failure
2) Reducing pipeline risk
3) Extending the life of an asset
4) Increasing sustainability
5) Optimizing CAPEX/TOTEX (capital/total expenditure)

Higgins then shared his secret recipe for the 10 key ingredients to be a best-in-class utility:
1) Focus on operations excellence
2) Coordinate with all key stakeholders
3) Perform necessary Public Relations
4) Create a clearly defined team across departments and disciplines
5) Always aspire towards total pipeline management
6) Prepare for emergencies, they will occur
7) Be opportunistic
8) Continue to innovate
9) Understand limitations of innovative approaches
10) Keep your boots on the ground (maximize the amount of inspected pipe)
 
He concluded his presentation talking about the importance of monitoring key performance indicators (KPIs) and keeping senior leadership engaged. Watch Higgins’ presentation:

The 4th Industrial Revolution

Richard Loeffler IV, Client Solutions Architect at Emnet, then reminded us that the number one criteria for where cities locate is the access to water. Loeffler also stated that we are in the midst of a 4th industrial revolution—IoT (Internet of Things) is changing the way we live, work, and play, and is transforming the fundamental economic cost structure of water and related civic works.

He used the example of South Bend, IN, to illustrate just how effective IoT and RTDSS (real-time decision support systems) can be. Ultimately, it’s all about environmental stewardship — it’s not just about saving money, but about doing the right thing for the world that we live in. View Loeffler’s presentation:

Smart Water

Following Loeffler’s informative presentation, Bridget Berardinelli, VP Product Management And Continuous Improvement for Xylem, stated how smart meters and applying analytics can help utilities generate real results. Berardinelli began by explaining how Sensus develops advanced technology solutions that enable the intelligent use of critical resources.

She covered Advanced Metering Infrastructure (AMI) and explained how to leverage it in order to increase operational efficiencies and improve scalability and flexibility. By delivering machine learning and analytics using a programmatic approach, Sensus is able to inform operational interventions that transform how water utilities operate. View her presentation:

Our Newest Solution

Concluding Berardinelli’s presentation, we heard from Pure Technologies Area Regional Manager, Susan Donnally, on how to manage large diameter water transmission mains. She began her presentation with a discussion on pipeline risk prioritization, stating that using data to drive decisions is a quintessential part of moving towards a proactive asset management approach. She then dove into why pipes fail; noting that age alone is a poor indicator of pipe condition. While there is no singular technology that can identify all of the indicators of pipe deterioration, a holistic, risk-based approach can help.

Donnally then moved on to highlight some of Pure’s latest technology innovations:

  • SmartBall® – in addition to leak and gas pocket detection, the tool now provides mapping, which combines data collected during an inspection with known, aboveground locations and pipeline drawings to create a field-generated GIS map of a pipeline.
  • PipeDiver® – Pure’s free-swimming condition assessment tool is now available with video and can easily correlate the data you’re getting from electromagnetics with actual footage.

 

Additionally, Donnally had a huge reveal! She introduced Pure’s newest PipeDiver solution, the PipeDiver UltraTM (currently in the beta testing phase with a couple of clients), which features high-resolution wall condition information for metallic pipes, such as cast iron, ductile iron, and steel, and is as easy to deploy as the existing PipeDiver. Watch her presentation:

You’re Not Going to Start with Perfection

Vice President of PureAnalytics, Travis Wagner, gave the final presentation of the day on managing distribution systems.

He truly engaged the audience by asking attendees to raise their hands if:

  • They saw a need or value in a pipeline renewal program
  • They agreed that a 10-20% efficiency in renewal programs is OK
  • They thought customer affordability was an issue
  • They had trouble with retirements and recruiting

 
Not surprisingly, most hands were raised! From there, Wagner went on to urge everyone to update their approach.

Utilities need to start asking themselves the following questions:

  • What is the current state of my assets?
  • What is my required level of service?
  • Which assets are critical to sustained performance?
  • What are my best O&M and CIP investment strategies?
  • What is my best long-term funding strategy?

 
Wagner concluded this portion of the presentation with a quote that all utilities should follow: “You’re not going to start with perfection, the goal is to build toward becoming better.”

Next, Wagner moved on to discuss risk management, consequence probability analysis, data collection, and risk mitigation. It was truly an eye-opening presentation:

The day concluded with demonstrations of all the latest technology available to utilities, including a 108” PipeDiver, SoundPrint® AFO system, Sensus meters, Visenti software demos, not to mention some great networking.

Want to learn more about our Modernizing Water Infrastructure Workshop? Check out #H2018Workshop on Facebook, LinkedIn, and Twitter.

 

A leak represents not only water loss, but can indicate the potential for pipeline failure.

How proactive utilities are taking the gamble out of finding leaks in order to mitigate failure risk

It takes a lot more than luck and traditional acoustic correlation methods to locate a suspected leak on large critical mains. Not all leaks are obvious, and some leaks can seep for years without visibly surfacing, putting utilities at risk for catastrophic failure.

That is why a proactive leak detection strategy plays such an important role in any asset management program. It allows utilities to obtain the general condition of their mains, since a leak not only represents a real water loss, but can also indicate the potential for pipeline failure.

Recently two water operators — The City of Vancouver, B.C. and The City of Norman, Texas— took measures to mitigate failure risks by implementing a leak detection program for their transmission networks. The utilities deployed various inline leak detection technologies, dependent on such factors as pipe diameter, material, access point availability, and operational constraints.

Acoustic intensity of anomaly and actual leak located

Left: Acoustic intensity of anomaly.   Right: Actual leak located

Inline technologies for leak detection

Inline leak detection technologies use non-destructive methods in which acoustic sensors are inserted into a pressurized pipeline. The “hissing” sound or vibration resulting from a leak in a pipe transmits an acoustic signal collected by the sensor when passing the leak site. The amplitude and frequency of the sound depends on the pipe material and internal pressure, and is easy to distinguish from other pipeline sounds.

Pure Technologies has developed two inline leak detection platforms for large-diameter pipelines of all materials: Sahara® (with a tethered sensor) and SmartBall® (a free-swimming tool).  Both tools are equipped with a sensitive acoustic sensor that can locate very small leaks (as small as 0.1 l/min) with high location accuracy.

SmartBall inside a pipe

The SmartBall tool can be launched while the main remains in operation, limiting disruption to service.

SmartBall leak detection technology

The SmartBall platform is an innovative technique to identify leaks and gas pockets in large-diameter pipelines while the line remains in service, minimizing disruption. The free-swimming ball contains a sophisticated leak detection circuitry and is released untethered into the water flow often through an air valve or hydrant (any 100mm opening). The SmartBall follows the water flow and is tracked by surface mounted sensors as it rolls through the pipe making a continuous recording of the acoustic activity in the pipeline. At a downstream location, the ball rolls into the retrieval device and is extracted from the pipe. The data is then evaluated to report the presence of leaks and gas pockets.

Since the SmartBall is propelled by the water flow, it can be used to survey the subject main for long distances (battery life up to 20 hours) in one deployment. As a result, modifications to the main are significantly reduced.

The tethered Sahara platform provides acoustic data on the presences of leaks and gas pockets and has the ability to map the pipeline alignment.

Tethered Sahara inspection platform

Utilities have long relied on the Sahara leak detection platform for speed, accuracy and real-time results.

The tethered platform identifies leaks and gas pockets by providing acoustic data on the presence of leaks for distances up to 1,800 meters (6,000 feet). The tool also has the ability for mapping the pipeline alignment, and is equipped with CCTV, adding an assessment.

The tool can be inserted into an active pipeline, through almost any tap two (2) inches and greater. As the Sahara tool enters the pipe, the flow velocity of the water inflates a small parachute, which pulls the tool through the pipe, with the probe lighting the way, highlighting any visual defects in the pipeline.

If the Sahara tool encounters any acoustic events – such as a leak – the operator can stop the tool at the exact point of the leak. At the same time, an above ground operator locates the sensor, marking the exact leak location within plus or minus 0.5 meters (18 inches). This enables users to know in real time where leaks are located.

The SmartBall tool was successfully retrieved with the acoustic data intact.

City of Vancouver SmartBall inspection

In March 2016, the City of Vancouver retained the services of Pure Technologies to perform a condition assessment of the Powell-Clark Feeder Main. The pipeline is comprised of concrete cylinder pipe (PCCP/BWP), ranging from 750 to 900m in diameter, installed in 1986-87.

In addition to providing an earlier PipeDiver® electromagnetic inspection to identify broken prestressing wire wraps on the main, Pure Technologies also performed a SmartBall inspection to identify and locate leaks and pockets of trapped gas along the line.

The SmartBall tool was inserted into the pipeline through a flange access and acoustic data was collected and recorded as the tool traversed the pipeline. At a distance of 5.8 kilometers, (470 meters from the end of the inspection run), the tool stopped, which was confirmed by the live tracking software. By analyzing data from the earlier PipeDiver EM inspection, Pure determined that unknown debris likely lodged the SmartBall tool.

The City excavated and modified a tap to allow Pure to access the pipeline with a submersible ROV (equipped with a camera) to retrieve the SmartBall tool and examine the debris, which turned out to be an old tool cart. The cart and SmartBall tool were extracted, and the data considered valid.

Analysis indicated three (3) anomalies characteristic of leaks and zero (0) pockets of trapped gas. Two (2) instances of entrained air were identified as migratory acoustic anomalies, and flagged for future inspection, as they may develop new pockets of trapped air.

When combined with the results from the EM inspection, the condition data will be used as part of the City of Vancouver’s asset management initiative and allow for proactive measures in the management of their infrastructure.

Sahara inspection for City of Norman, Texas 

In December 2016, Pure Technologies performed a leak detection survey on the 30-inch Robinson Street Replacement Water Main (RSRWM) for McKee Utility Contractors (McKee).  The RSRWM is owned and operated by the City of Norman, Oklahoma.

McKee suspected a leak on the pipeline, as the RSRWM was failing to hold pressure during the 150 psi hydrostatic pressure test.  As a result, McKee requested that Pure Technologies inspect 4,248 feet of the RSRWM and pinpoint any leaks in the inspected section.

The Sahara platform was selected for its ability to provide same-day results, and to accurately locate small leaks with sub-meter accuracy. The tethered tool is propelled by a small parachute inflated by the product flow, requiring a flow velocity as little as one foot per second to progress through a water main.

Because the pipeline was not yet in service, the flow was generated with a city connection pushing water into the main, and a 12-inch blow-off spewing it out. The Sahara audio-visual (AV) sensor was deployed to the endpoint using the flow velocity provided by the blow-off.

After the leak was located and marked above ground, McKee quickly excavated around the butterfly valve, tightened the bolts and eliminated the leak on the same day.

Two leaks detected, located and repaired

As a result of the survey, 4,294 feet of the RSRWM was inspected, with two leaks located.

Leak 1 was located 1000 feet from the first insertion. Video from the Sahara tool showed that the leak was located on the mechanical joint securing the inline butterfly valve to the pipeline. The Sahara team located the leak, and marked it above ground and McKee was able to start excavating immediately. After quickly excavating the butterfly valve, McKee was able to tighten the bolts on the BFV, eliminating the leak the same day as the excavation.

A second leak was located, marked above ground, excavated, and repaired the same way as the first. After repairing the two leaks found, the line passed pressure test.

While metallic rising mains have been historically difficult to manage, a risk-based approach increases confidence in the condition of the pipeline.

Nothing grabs headline news like the failure of a rising main, which can be extremely damaging to the environment and harmful to a utility’s reputation.

Historically, wastewater rising mains have been difficult to manage, especially those made with ferrous materials, where the failure method is slow when compared to concrete pressure pipe. As well, sewer rising mains have special operational challenges that don’t apply to gravity sewer mains as they typically cannot be taken out of service for inspection, and due to the presence of solids in the fluid, rising mains represent a far more abrasive environment than potable systems such that assessment methods for water mains may not be applicable.

The presence of pockets increases the potential of corrosion in metallic pipes.

Gas pockets are of significant concern in rising mains.

The primary failure mechanism of ferrous rising mains is due to internal corrosion. Gas pockets are of significant concern in rising mains, as concentrations of hydrogen sulfide gas within wastewater can be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s wall.

Therefore, a first step in assessing rising main condition should be the identification of gas pocket locations within the pipeline.

Pure Technologies has performed an analysis of rising mains inspected using acoustic based technologies in order to better characterize the frequency and location of gas pockets. Based on the analysis, it was found that 72% of gas pockets were not at known high points or air release valves, therefore, the most precise way to identify gas pockets within a rising main is through the implementation of inline acoustic inspection technologies.

The collection of gas pocket locations alone will not indicate the condition of the pipeline, but instead identifies locations where an increase in corrosion potential is observed. To ascertain the true condition of a pressure pipe, higher resolution electromagnetic technologies are required. These technologies measure pipe wall thickness in ferrous materials and broken wire or bar wraps in concrete pressure pipe.

Once the condition data is collected, advanced analytics can be applied to estimate the pipeline’s remaining useful life.

“Previous analyses involved straight-line assumptions – comparing the pipe wall thickness at installation against what it is today. However this doesn’t give an accurate picture of how pipes degrade…by using statistical modeling we can develop a more predictable degradation rate based off of over 14,000 miles of inspection data Pure has collected over the past 30+ years.”

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Desktop studies are not always reliable.

While often the first thought is to replace the aging wastewater assets based on factors such as age and failure history, this option makes neither logical nor financial sense. With so many miles of buried pipelines and such limited capital budgets, utilities don’t have hundreds of millions to spend on replacing pipelines which still have remaining useful life.

At Pure Technologies, we believe there is a better way. A more feasible approach to ensuring the safe operation of rising mains is to undertake a risk-based approach to manage their operation. A risk-based approach will provide decision intelligence on which assets require rehabilitation or replacement to extend their useful life. Or which assets can be left alone.

Our approach is to help utilities evaluate the current state of their buried infrastructure and provide them with high confidence condition and operating data.   We then couple this with our years of extensive experience and project history (more than 12,000 kilometers of pressure pipe assessment) to provide utilities with actionable information, which allows them to make informed decisions as to the management of these critical assets.

Value of a risk-based approach to manage rising mains.

Utilities that embrace a risk-based approach to manage their rising main inventory have found that on average they can safely manage their rising mains for roughly 5 to 15 percent of the replacement cost. This pragmatic approach focuses on providing real condition data through assessment, which can be used to selectively renew isolated areas of damaged pipe in lieu of capital replacement.

Four steps to a risk-based approach.

At Pure, we recommend a risk-based approach to manage wastewater rising mains by focusing on four main areas:

  • Preliminary Risk Analysis
  • Internal Corrosion Potential Surveys using Inline Acoustics
  • Pipe Wall Assessment using Advanced Technologies
  • Condition Data Analysis and Advanced Risk Assessment

Most common reasons for pipeline failure.

Preliminary analysis.

Preliminary analysis includes collecting the right data to develop a prioritized plan for assessment, including the selection of appropriate technologies. To help make preliminary decisions, Pure collects all available information to understand the history of the pipeline and the likely failure modes. The data analysis will provide an understanding of the construction and context of the pipeline. Data of interest typically includes pipe characteristics, installation factors, environmental and performance-related data, operational data, and failure data.

Acoustic-based SmartBall® tool locates leaks and gas pockets

Acoustic-based SmartBall® tool used to locate leaks and gas pockets.

Sahara is an inline tethered tool that can locate leaks and gas pockets.

Internal corrosion potential survey.

An internal corrosion potential survey uses inline tools to locate gas pockets that can increase the potential for corrosion and eventual breakdown of the pipe wall. Pure Technologies typically deploys its acoustic-based SmartBall® leak and gas detection tool, as well as its tethered Sahara® leak and gas pocket detection platform to locate gas pockets in pressurized lines of all materials.

Pipe wall assessment.

While the presence of gas pockets may indicate areas of potential concern, it will not give a quantifiable answer as to the structural life of the pipe.

Pipe wall assessment is completed using a variety of technology solutions to identify defects and deterioration of the pipe wall in a variety of pipe materials. For pipe wall assessment of metallic rising mains, common internal electromagnetic technologies include the PipeWalker® and PureRobotics® platforms, as well as the free-swimming 24-detector PipeDiver® assessment tool, developed to identify electromagnetic anomalies indicating pipe wall loss.

PipeDiver® assessment tool, identifies electromagnetic anomalies indicating pipe wall loss.

Condition assessment analysis.

Condition data analysis and risk assessment evaluates how to safely renew or extend the life of rising mains. The risk evaluation considers not only the probability of failure (condition) of the rising main based on inspection data, but also the consequence of failure in order to make sound engineering decisions.

Understanding the risk of the pipeline is an important step in selecting and justifying the appropriate condition assessment methods. As the risk of the asset increases, the value of using high-resolution comprehensive assessment techniques increases. Higher resolution data results in more confident decision making, and would justify and prioritize the application of assessment techniques.

Diagnostic analytics helps utilities move risk assessment forward.

In the past, inspections were done, the data analysed, and the results passed on to the utility. Pure Technologies now offers a more holistic program of diagnostic analytics. This includes analysis of what caused the corrosion problem within the pipe wall, what the impact the corrosion has on the life of the pipeline, and a prescriptive analysis of how it needs to be repaired or rehabilitated.

The next step gathering momentum? Predictive analysis to elongate service life.

While metallic force mains have been historically difficult to manage, a risk-based approach increases confidence in the condition of the pipeline.

After the Clean Water Act of the 70s required control of wastewater discharge, an increase in force main construction and management across the country was observed. As these assets are now approaching 50 years in age, reducing the risk of failure has become a major regulatory priority. Nothing grabs headline news like the failure of a force main, which can be extremely damaging to the environment and harmful to a utility’s reputation.

Historically, wastewater force mains have been difficult to manage, especially those made with ferrous materials, where the failure method is slow when compared to concrete pressure pipe.

As well, pressurized sewer mains have special operational challenges that don’t apply to gravity sewer mains as they typically cannot be taken out of service for inspection, and due to the presence of solids in the fluid, force mains represent a far more abrasive environment than potable systems such that assessment methods for water mains may not be applicable.

The presence of gas pockets increases the potential of corrosion in metallic pipes.

Gas pockets are of significant concern in force mains.

The primary failure mechanism of ferrous force mains is due to internal corrosion. Gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater can be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s wall.

Therefore, a first step in assessing force main condition should be the identification of gas pocket locations within the pipeline.

Pure Technologies has performed an analysis of force mains inspected using acoustic based technologies in order to better characterize the frequency and location of gas pockets. Based on the analysis, it was found that 72% of gas pockets were not at known high points or air release valves, therefore, the most precise way to identify gas pockets within a force main is through the implementation of inline acoustic inspection technologies.

The collection of gas pocket locations alone will not indicate the condition of the pipeline, but instead identifies locations where an increase in corrosion potential is observed. To ascertain the true condition of a pressure pipe, higher resolution electromagnetic technologies are required. These technologies measure pipe wall thickness in ferrous materials and broken wire or bar wraps in concrete pressure pipe.

Once the condition data is collected, advanced analytics can be applied to estimate the pipeline’s remaining useful life.

“Previous analyses involved straight-line assumptions – comparing the pipe wall thickness at installation against what it is today. However this doesn’t give an accurate picture of how pipes degrade…by using statistical modeling we can develop a more predictable degradation rate based off of over 14,000 miles of inspection data Pure has collected over the past 30+ years.”

Jennifer Steffens, Market Sector Leader, Water and Wastewater, Pure Technologies

Desktop studies are not always reliable.

While often the first thought is to replace the aging wastewater assets based on factors such as age and failure history, this option makes neither logical nor financial sense. With so many miles of buried pipelines and such limited capital budgets, utilities don’t have hundreds of millions to spend on replacing pipelines which still have remaining useful life.

At Pure Technologies, we believe there is a better way. A more feasible approach to ensuring the safe operation of force mains is to undertake a risk-based approach to manage their operation. A risk-based approach will provide decision intelligence on which assets require rehabilitation or replacement to extend their useful life. Or which assets can be left alone.

Our approach is to help utilities evaluate the current state of their buried infrastructure and provide them with high confidence condition and operating data.   We then couple this with our years of extensive experience and project history (more than 12,000 kilometers of pressure pipe assessment) to provide utilities with actionable information, which allows them to make informed decisions as to the management of these critical assets.

The value of a risk-based approach to manage force mains.

Utilities that embrace a risk-based approach to manage their force main inventory have found that on average they can safely manage their force mains for roughly 5 to 15 percent of the replacement cost. This pragmatic approach focuses on providing real condition data through assessment, which can be used to selectively renew isolated areas of damaged pipe in lieu of capital replacement.

At Pure, we recommend a risk-based approach to manage wastewater force mains by focusing on four main areas:

  • Preliminary Risk Analysis
  • Internal Corrosion Potential Surveys using Inline Acoustics
  • Pipe Wall Assessment using Advanced Technologies
  • Condition Data Analysis and Advanced Risk Assessment

Some of the common reasons leading to failure on ferrous pipes.

Preliminary Risk Analysis

Preliminary analysis includes collecting the right data to develop a prioritized plan for assessment, including the selection of appropriate technologies. To help make preliminary decisions, Pure collects all available information to understand the history of the pipeline and the likely failure modes.

The data analysis will provide an understanding of the construction and context of the pipeline. Data of interest typically includes pipe characteristics, installation factors, environmental and performance-related data, operational data, and failure data.

Acoutic-based SmartBall® tool locates leaks and gas pockets

Acoustic-based SmartBall® tool locates leaks and gas pockets.

Sahara is an inline tethered tool used to locate leaks and gas pockets in pressurized lines.

Internal Corrosion Potential Survey.

An internal corrosion potential survey uses inline tools to locate gas pockets that can increase the potential for corrosion and eventual breakdown of the pipe wall. Pure Technologies typically deploys its acoustic-based SmartBall® leak and gas detection tool, as well as its tethered Sahara® leak and gas pocket detection platform to locate gas pockets in pressurized lines of all materials.

Pipe Wall Assessment.

While the presence of gas pockets may indicate areas of potential concern, it will not give a quantifiable answer as to the structural life of the pipe.

Pipe wall assessment is completed using a variety of technology solutions to identify defects and deterioration of the pipe wall in a variety of pipe materials. For pipe wall assessment of metallic force mains, common internal electromagnetic technologies include the PipeWalker® and PureRobotics® platforms, as well as the free-swimming 24-detector PipeDiver® assessment tool, developed to identify electromagnetic anomalies indicating pipe wall loss.

PipeDiver® assessment tool identifies electromagnetic anomalies indicating pipe wall loss.

Condition Assessment Analysis.

Condition data analysis and risk assessment evaluates how to safely renew or extend the life of force mains. The risk evaluation considers not only the probability of failure (condition) of the force main based on inspection data, but also the consequence of failure in order to make sound engineering decisions.

Understanding the risk of the pipeline is an important step in selecting and justifying the appropriate condition assessment methods. As the risk of the asset increases, the value of using high-resolution comprehensive assessment techniques increases. Higher resolution data results in more confident decision making, and would justify and prioritize the application of assessment techniques.

Diagnostic analytics helps utilities move risk assessment forward.

In the past, inspections were done, the data analysed, and the results passed on to the utility. Pure Technologies now offers a more holistic program of diagnostic analytics. This includes analysis of what caused the corrosion problem within the pipe wall, what the impact the corrosion has on the life of the pipeline, and a prescriptive analysis of how it needs to be repaired or rehabilitated.

The next step gathering momentum? Predictive analysis to elongate service life.

 

For this Vancouver Island community, tight deadlines, plug valves, and a rising tide were among the challenges faced during this condition assessment project.

Sometimes the catalyst for a pipeline inspection can come from an unexpected source. In this instance, the story began when it was noticed that a sewer pipe was exposed from erosion during low tide along the beach. That observation set the wheels in motion for an eventual inspection of a critical force main that services approximately 41,000 residents in both the Town of Comox and the City of Courtenay on the eastern coast of Vancouver Island.

The pipeline was installed in the early 1980s, and consists of an 8.75 km large-diameter force main that connects the City of Courtenay, Town of Comox and K’ómoks First Nation Community to the Comox Valley Water Pollution Control Centre (CVWPCC). This includes a five-kilometer portion buried in an “intertidal” foreshore section (area between high and low tide).

Over time, a section of beach eroded and exposed the line to coastal wave action (high tide hides the pipe). The Comox Valley Regional District (CVRD) took steps to restore the beach section where pipeline had been exposed, and began developing plans to relocate the exposed force main off the foreshore.

Island community concerned about pipeline risk of failure.

Sensitive location and potential environmental consequences strike nerve with community.

A new concept was developed that would utilize a portion of the existing force main within the foreshore but remove from service the exposed force main. Due to its sensitive location and the environmental consequences of a potential failure, the CVRD elected to complete a highly specialized pipe condition assessment on the entire length of the line to better understand the remaining service life and condition of the force main. As a result, the project timeline was tight, as CVRD needed imminent results to proceed with corrective action immediately should it be required.

The assessment challenges began from the get-go.

The inspected portion of the pipeline was built of two different pipe materials (PCCP and BWP) and three different pipe diameters (450-, 750- and 820-mm). As well, the critical line could not be taken out of service. The CVRD consultant, Associated Engineering, assisted in developing the request for proposal (RFP) process used to select Pure Technologies (Pure) to conduct the condition assessment, which included an electromagnetic inspection, structural curves, leak and gas pocket detection, and transient pressure monitoring.

Pure proposed the acoustic-based SmartBall® tool for the leak and gas pocket detection, and its free-swimming PipeDiver® inspection platform for the electromagnetic inspection of the line.

“This project had a lot of challenges, especially since the asset was so critical to the region. However Pure was able to help us understand the true condition of the line without requiring a shutdown of the critical force main, and has given us defensible information to make informed decisions in the future.”

Kris La Rose, Senior Manager Water/ Wastewater Services, Comox Valley Regional District

Pipeline alignment follows along the Vancouver Island coast.

Transient pressure monitoring used to understand surge pressures within the line.

First, transient pressure monitors were installed at the Courtney Pump Station (CPS). For more than 4 weeks, the recorded pressure data was used to understand the operational and surge pressures within the force main and their impact on the structural integrity of the pipeline.

SmartBall® technology detects and locates acoustic signature related to leaks and gas pockets.

While transient pressure data was collecting, Pure deployed its proprietary SmartBall technology, a multi-sensor tool used to detect and locate the acoustic signature related to leaks and gas pockets in pressurized pipelines.

The tool has the ability to inspect long distances in a single run, and while the SmartBall is deployed, the pipeline remains in service, limiting disruption to customers.

PipeDiver tool collects electromagnetic data regarding the pipe wall.

PipeDiver® electromagnetic technology designed to assess PCCP, BWP and metallic pipes.

In addition to utilizing the SmartBall tool, Pure chose to deploy the PipeDiver platform, a free-swimming condition assessment tool that collects electromagnetic data regarding the pipe wall, and operates while the pipeline remains in service, an important factor for the force main inspection. The tool travels with the product flow and utilizes flexible petals to navigate plug valves, tees and bends in the pipeline.

Crews had to retrieve the PipeDiver tool within a short 20-minute time window.

Tight time-frame for tool insertion and retrieval of sensor data.

Due to the criticality of the line, and a small capacity wet well at the CPS, the inspection teams had a very short time window (20 minutes) to insert the inspection tools. The small capacity wet well also meant that boosting flows was limited – if pumped too hard, the wet well would draw down and empty, and if pumped too slow, the PipeDiver tool could get lodged at the inline plug valves. (Low flow rate is not a significant problem for the SmartBall tool.) The solution was to first use the SmartBall inspection tool to test the flows in order to optimize the inspection approach for the PipeDiver run.

While the low flow rate slowed the SmartBall inspection, a forecast of rain moved up the PipeDiver run a day ahead in order to take advantage of extra flows that could be provided by the wet weather. The tool also had to navigate a series of 90-degree bends and a plug valve with a small port width in the pump station pipe.

Tracking the tools along the beach was fraught with potential for problems. Inspection crews needed to monitor the tidal forecasts in order to access the tracking sensors during the tide ebb, which meant a short window to retrieve the sensor data.

In spite of the challenges and risk, the dynamic four-day inspection proved successful, and went off without a hitch. The Pure Technologies crew and CVRD operators worked very well together, and their collaborative efforts ensured that this important project was successfully completed.

Damp weather didn’t dampen the inspection ingenuity of the team.

Data analysis indicated no electromagnetic distress on inspected pipes.

Based on the inspection data, Pure analysts identified zero (0) leaks, one (1) acoustic anomaly associated with trapped gas, five (5) acoustic anomalies characteristic of transient gas and two (2) acoustic anomalies associated with entrained gas. In particular, gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall.  This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

The results also showed no indication of electromagnetic distress on the inspected pipes, which was good news, in spite of the corrosive salt water environment.

Overall, the CVRD was pleased with the inspection results, as they were able to understand the condition of the pipeline and make an informed decision for capital improvements. The project demonstrates how the region uses actionable data to effectively manage their finances and risk, while continuing to provide the community with a safe and reliable delivery of wastewater.

 

Case Study

The Washington Suburban Sanitary Commission (WSSC) is the 8th largest water and wastewater utility in the United States, serving over 460,000 customer accounts and 1.8 million residents in Montgomery and Prince George’s County, Maryland (suburban Washington D.C.).

WSSC operates nearly 5,500 miles of water mains, with approximately 145 miles comprised of large-diameter Prestressed Concrete Cylinder Pipe (PCCP) equal to or greater than 36-inches in diameter.

Project Details

Services
SmartBall®
Acoustic Leak Detection
PipeDiver® – Condition Assessment
PureRobotics® – Pipeline Inspection
SoundPrint® AFO – Acoustic Fiber Optic (AFO) monitor­ing
Timing
2014
Pipe Material
PCCP
Inspection Length
145 miles
Diameter
36-inches

Project Highlights

The Assess & Address cost was roughly 6% of the capital replacement estimate of $2 billion

95% of the pipes inspected by Pure Technologies have no deterioration at all

Pure has identified less than 2% of pipes in need of immediate repair

A capital replacement program would have replaced a large amount of pipe in good condition

Challenge

After WSSC began experiencing major PCCP failures in the 1970s, it developed a strong commitment to infrastructure management technology in favor of large capital replacements. Beginning in 2007, WSSC and Pure Technologies began a partnership to create a comprehensive PCCP management program.

Pure Technologies Assess & Address approach to pipeline management is built on extensive research and data from over 8,000 miles of pressure pipe inspection which has found that less than 1 percent of pipelines need immediate repair. Assess & Address programs focus on identifying vulnerable areas of a pipeline and completing selective rehabilitation and replacement in favor of full-scale capital replacement, often saving the utility millions of dollars.

Solution

Pure Technologies uses several solutions for WSSC’s PCCP management program that effectively inspect the pipeline for leaks, gas pockets, and structural deterioration. Pure also provides real-time monitor­ing of the pipelines to alert the WSSC when indi­vidual pipe segments experience prestressed wire breaks and are approaching a high risk of failure.

Pure’s SmartBall® Acoustic Leak Detection Technol­ogy is used to identify leaks and pockets of trapped gas, allowing for proactive repair. The SmartBall inspection tool is a non-destructive, free-swimming technology that measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines. Early identification and repair of leaks and gas pockets reduces water loss and structural deteri­oration and is crucial in understanding the baseline condition of a pipeline. Pure Technologies regularly deploys SmartBall leak detetction as part of the pro­gram having identified several major transmission mains leaks within WSSC’s system to date.

WSSC Pipelines are also inspected for structur­al deterioration using several of Pure’s platforms. Manned visual and sounding inspections of dewa­tered pipes help identify visible structural damage like corrosion, delamination, and cracking. Pure also uses PipeDiver® and PureRobotics® Electromagnet­ic (EM)Technology Platforms to locate and quantify broken prestressing wires in each pipe section.

Information from these inspection techniques are combined to provide actionable information (including structural modeling and analysis), which allows WSSC to safely manage their PCCP inventory while minimizing renewal projects.

In addition to regular condition assessment, WSSC began using Acoustic Fiber Optic (AFO) monitoring in 2007. Ultimately, the program will monitor up to 145 miles of 36-inch and larger PCCP within WSSC’s system.

AFO technology monitors the condition of PCCP by tracking the amount of wire breaks in each pipe section. The system allows WSSC to monitor pipe­line deterioration and see at-risk pipes before they fail. As wire breaks occur, the data is analyzed and reported to WSSC by e-mail and advanced GIS and web-based reporting systems, allowing for real-time management of WSSC’s system.

Results

While WSSC’s PCCP program is one of the largest and most advanced infrastructure management programs in the industry, the cost of Pure Technologies Assess & Address model is roughly 6 percent of the $2-billion capital replacement estimates.

To date, Pure Technologies inspections have shown that about 95 percent of WSSC’s pipes are in “like new” condition and less than 2 percent require any immediate rehabilitation or replacement. By identifying select distressed areas, WSSC was able to avoid a full replacement program and avoided massive capital replacement costs by rehabilitating the identified sections.

Since the program’s inception, no PCCP failures have occurred for any transmission main managed under the program.

Case Study

The Trinity River Authority of Texas (TRA) owns and operates 8.5 miles of 30-inch BWP and PCCP that supplies raw water from Lake Arlington to the Tarrant County Water Supply Project Water Treatment Plant in Euless, Texas.

The 30-inch pipeline, in conjunction with a parallel 54-inch pipeline, conveys raw water to the Authority’s 87 mgd WTP. Treated water produced at the WTP is supplied to five cities in the mid-cities region between Dallas and Fort Worth including Bedford, Colleyville, Euless, Grapevine and North Richland Hills.

Project Details

Services
SmartBall® Leak Detection
PipeDiver® Condition Assessment
Transient Pressure Monitoring
C303 Bar-Wrapped Pipe structural performance curves
Timing
November 2012 – July 2013
Pipe Material
Bar-Wrapped Pipe and PCCP
Inspection Length
8.5 miles (14 km)
Diameter
30-inch (750mm)
Transmission Type
Raw Water

Project Highlights

SmartBall survey identified 4 leaks and 3 air pockets

Only 1% of BWP sections identified as distressed

TRA verified and repaired 3 high-risk BWP sections

Cost was roughly 4% of the replacement estimate of $25 million

Challenge

TRA had originally planned to replace this pipe­line, but chose to assess and selectively rehabili­tate the pipeline by finding solutions that could identify the most distressed areas. The pipeline spans about 8.5 miles and is made up primari­ly of BWP, although there are some sections of PCCP. It was constructed in 1973.

Solution

In November 2012, TRA began a condition assessment program that included transient pressure monitoring, acoustic leak and gas pocket detection, internal electromagnetic inspection, and structural condition assessment including finite element analysis.

For the leak and air pocket assessment, TRA used SmartBall® technology. The SmartBall inspection tool is a non-destructive, free-swim­ming technology that measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines. When acoustic anomalies are present, the data is analyzed to determine if it is a leak, gas pocket, or just an external sound.

Regular leak detection inspections can help util­ities identify leaks that may not be visible at the surface. By repairing leaks, utilities can reduce their non-revenue water and prevent pipeline failures, as leaks are often a preliminary indi­cation of pipeline deterioration. Location and elimination of air pockets is also beneficial as it reduces pressure on pumps that are attempting to pump water past a gas pocket.

For the structural inspection, TRA used PipeDiver®, a free swimming electromagnetic tool that identifies wire breaks in PCCP and bar breaks and broad areas of cylinder corrosion in BWP using electromagnetic technology. The tool oper­ates while the pipeline remains in service.

Although BWP looks similar to Prestressed Con­crete Cylinder Pipe (PCCP) in cross section, their design and materials are significantly different. PCCP is a concrete pipe that remains under compression because of the prestressing wires, with the thin-gauge steel cylinder acting as a water membrane. With BWP, the cylinder plays a much larger role in the structural integrity of the pipe. BWP is essentially designed as a steel pipe with mild steel used to manufacture the steel cylinder and steel bars.

As a result, the bar in BWP and wire in PCCP respond differently to environmental conditions that facilitate corrosion. The high strength steel wire in PCCP is smaller in diameter and wrapped under higher tension, therefore corrosion makes it quite vulnerable to breakage. The mild steel bars in BWP are thicker in diameter and wrapped under less tension, therefore corrosion takes sig­nificantly longer to lead to breakage.

The engineering services portion of the project was completed to identify optimal operating conditions for the pipeline and determine the structural performance of the pipe materials. This included creating performance curves for TRA’s BWP, as well transient pressure monitor­ing.

The BWP structural performance curves allowed TRA to determine which pipe sections to exca­vate and verify. By determining the bar break yield limit for the specific pipe material, TRA was able to identify which pipe sections should be immediately addressed and which could remain in safe operation.

Results

The SmartBall® survey identified four leaks and three gas pockets. Although the four identified leaks were small (less than 2 gallons per minute), one was located in the front yard of a brand new church building and could have caused signif­icant water damage had it not been repaired immediately by TRA. Water from this leak was visible at the surface 325 feet away from the actual leak location.

The structural inspection using PipeDiver® iden­tified four PCCP pipes with electromagnetic anomalies resembling wire breaks. The inspec­tion of the BWP identified 14 pipes with bar break damage and 72 pipes with electromagnet­ic anomalies resembling cylinder defects out of 1,284 inspected pipes.

TRA has verified and repaired three sections of BWP that were beyond the yield limit deter­mined by the structural performance curves. Upon verification, TRA and Pure determined that distress areas identified in the inspection were accurate and the excavated pipe sections had bar breaks and corrosion.

By repairing specific pipe sections with dete­rioration, TRA was able to avoid replacing the entire 8.5 mile pipeline at a high capital cost. Completing condition assessment has also allowed TRA renew its pipeline infrastructure and continue providing reliable service to cus­tomers in the region.

Case Study

Intermunicipal Service Oeiras and Amadora is a water management company responsible for the distribution of drinking water for the municipalities of Amadora and Oeiras in the Lisbon region of Portugal. SIMAS Oeiras e Amadora distributes water to more than 350,000 customers who have come to rely on the public company for their water services.

Project Details

Services
SmartBall leak detection inspection
Pipe Material
Ductile iron
Inspection Length
2781 meters (2.6 miles)
Diameter
600mm (24-inch)
Transmission Type
Water

Project Highlights

Total of 1.7 miles (2.78kms) of 5-year-old pipeline inspected

Inspection located one (1) leak 863 meters from insertion

Leak repaired and allowed SIMAS Oeiras e Amadora to recover costs associated with the loss of non-revenue water

Challenge

The F. Passarinhos-Atalaia duct is a pressurized pipeline that supplies water to one of eight reservoirs operated by SIMAS Oeiras e Amadora in the municipality of Amadora. Installed in 2007, the large 600 mm (24-inch) transmission main, made from ductile iron material, delivers drinking water to approximately 31 percent of Amadora’s residents, making it a critical part of the municipality’s buried infrastructure.

In 2012, SIMAS Oeiras e Amadora detected a noticeable pressure drop in the system, indicating the possibility of a critical leak, the predecessor of a potential rupture that could negatively impact the environment and significantly disrupt day-to-day life in the community.

In addition to physical losses of water caused by a small leaks, the escaping non-revenue water can eventually erode the surrounding soil making the area more prone to washouts or sinkholes, a major headache especially in densely populated areas. Unplanned excavations to repair unforeseen leaks can also erode consumer confidence in a public utility.

Solution

When traditional leak detection methods—geophones and acoustic correlators­ were unable to detect the location and size of the leak, SIMAS Oeiras e Amadora called on its contractor to perform a leak detection survey using the innovative SmartBall tool from Pure Technologies (Pure).  Because of the criticality of the line, the survey was conducted while the pipeline remained in operation.

Pure’s patented SmartBall tool is an aluminum-core, foam-shell ball packed with several different sensors that can be launched into a water main without any disruption to client service.

Unlike traditional external listening tools that have limited success on large diameter pipes, SmartBall is the industry’s only free-flowing multi-sensor technology that provides the highest degree of accuracy, since as the ball rolls, it can inspect every inch of a water main to detect potential problems such as leaks and gas pockets. Its highly sensitive acoustic sensors can locate ‘pinhole’ leaks and gas pockets within a location accuracy of 1.8 meters.

Results

The SmartBall was inserted into the pipeline through a 6” gate valve and the journey took two hours and 49 minutes. One small leak was detected, 863 meters from the insertion site. This leak was repaired and allowed SIMAS Oeiras e Amadora to recover costs associated the loss of non-revenue water, had it remained undetected.

Although the SmartBall tool detected just one leak, the inspection gave SIMAS Oeiras e Amadora the capacity to assess assets from inside the pipe rather than drawing conclusions from indirect, external clues. If leaks are discovered early, operators can take necessary action to makes repairs before they become a major problem.

This process allows progressive operators like SIMAS Oeiras e Amadora to develop a sustainable long-term strategy for managing their critical buried assets.

Case Study

Hutt City’s main outfall pipeline (MOP) is one of its most critical assets, taking treated wastewater from the Seaview treatment plant to the outfall at Pencarrow Head. The MOP is 18 kilometres long and has an average flow is about 550 litres per second. It was commissioned in 1962 and has an expected life of about 60 years.

Project Details

Services
Assess and Address®Technology Driven Pipeline Solutions
Electromagnetic Inspection
SmartBall® Leak and Gas Pocket Detection
3D Finite Element Analysis and Structural Modelling
Timing
2007- ongoing
Pipe Material
PCCP
Inspection Length
18 km (11 miles)
Diameter
1295mm (50-inch)
Transmission Type
Treated Wastewater

Project Highlights

EM inspection showed 354 of 4,662 pipe sections with some distress

92% of Hutt City’s main outfall pipeline had no deterioration at all

Hutt City was able to extend the life of the critical asset through proactive pipeline management

Challenge

Monitoring the condition of underground assets is a major challenge; much of the New Zealand’s infrastructure was constructed more than 60 years ago and is beginning to reach the end of its design life. While councils search for solutions to manage infrastructure, there is increasing public pressure to minimise rates and improve environmental performance.

Over time, Hutt City’s MOP has showed signs of deterioration, culminating with one pipe section failing catastrophically during normal operation. While replacing the ageing MOP is one solution, it is very difficult and expensive to complete. While the main has a replacement value of $60 million, the costs associated with replacement would likely be much higher due to the logistical challenges associated with constructing a new main.

Solution

In May 2013, Hutt City Council and Hutt Valley Water Services contracted MWH Global to assess the possibility of repairing or replacing of the MOP. In order to complete a comprehensive condition assessment of the main, MWH contracted Pure Technologies, a Calgary-based company.

In order to fully understand the condition of an asset, it is important to use a variety of solutions that identify different aspects of deterioration. This approach is called Assess and Address®, which focuses on identifying and locating isolated areas of distress along a pipeline for renewal. Through this approach, Hutt City can avoid replacing the entire MOP – which is challenging and costly – while increasing its reliability and extending its useful life. Pure used multiple solutions for to assess the MOP for leaks, gas pockets, and structural deterioration. The SmartBall® tool was used to identify leaks and pockets of trapped gas, as well as validate the results of the electromagnetic (EM) inspection. The tool is a free-swimming and measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines.

To identify structural deterioration, electromagnetic technology was used on the PipeRider platform in the dewatered pipeline. Once calibrated above the ground using spare pipe sections – with one of the pipes having some wires exposed and cut for the calibration – the bike was disassembled and placed in one end of the pipeline. The inspection was completed by generating an eddy current and measuring the signal as it conducts through the reinforcing steel within the concrete pipe wall as the tool traverses the pipeline. In Prestressed Concrete Pipe (PCP), the reinforcing steel wires are the main structural component. As these wires begin to deteriorate, specific pipe sections become structurally weaker and are more likely to fail.

Upon completion of the inspection, Pure performed 3D Finite Element Analysis and Structural Modelling on specific sections of the MOP. This process determines how the specific pipe material will perform under different operating conditions, which will guide Hutt City on how to safely operate its main to prevent pipe failures.

This analysis also provides an estimated remaining useful life for the asset, which aids in the development of re-inspection and replacement planning.  

Results

By managing the MOP in favour of replacement, Hutt City was able to determine that one of its most critical assets had remaining useful life. This prevented a very expensive and challenging replacement project, allowed for the deferral and redeployment of capital to other projects.

The data collected and subsequent structural analysis provided an understanding of the condition of the pipe’s main structural component while being non-destructive to the pipe itself. In total, 8 percent of pipe sections had some level of deterioration (354 of 4,622), meaning a complete replacement was unnecessary and the asset has remaining useful life.

By managing its critical infrastructure, Hutt City demonstrated its commitment to providing safe, reliable and sustainable service while ensuring that capital works budget is efficiently and responsibly allocated.

It’s fantastic we’re able to use this world-class technology in our city and benefit from the advanced results it can give us to help plan for the future.

Bruce Sherlock

General Manager, Hutt Valley Water Services

Case Study

In March 2014, Pure Technologies completed a successful leak detection survey on behalf of Mancomunidad Comarca de Pamplona (MCP). The inspected pipeline is part of the MCP’s water supply network, was constructed 20 years ago, and traverses from Olaz – El Cano Pump Station to the Gorraiz Reservoir for 2.4 kilometers.

The main’s purpose is to keep water supply to the town of Egües, which features a hotel and golf course. The pipeline has an operating pressure of 12 bar and is pump operated with 50 litres per second during winter months and 100 litres per second during summer season because of increased demand. The inspection was performed in two runs to proactively address water loss on the transmission main.

Project Details

Services
SmartBall® Leak and Gas Pocket Detection
Timing
March 2014
Pipe Material
Ductile Iron
Inspection Length
2.4 km (1.5 miles)
Diameter
400mm (16-inch)
Transmission Type
Water

Project Highlights

SmartBall® leak detection located 4 leaks in 1.49 miles (2.4 kms) of inspection

3 of 4 leaks have been verified and repaired by MCP

Leaks as small as 1 litre per minute identified by SmartBall technology

Challenge
MCP is very dedicated to controlling water loss and completing regular leak detection; they have a permanent internal group with the unique mandate of finding leaks. Typically, they use an advanced SCADA system to identify an area with a leak and then experienced technicians use geophones to establish the exact location of the leak. Using this procedure, MCP has reached a Non-Revenue Water (NRW) level of roughly 10 percent of in their entire network. However, the Impulsión de Gorraiz had a known leak that could not be pinpointed precisely. MCP knew its elevation coordinates but couldn’t identify its exact location using traditional methods.

Solution
With a philosophy of continuous improvement, MCP used Pure’s services to perform a leak detection survey with SmartBall. To supplement its internal leak detection team and SCADA system, MCP wanted to test the validity of an inline leak detection tool and locate the known leak on this pipeline. MCP places equal importance on identifying large leaks and small leaks.

While large leaks leak at a much higher rate, identifying them only eliminates a leak at the tail end of its life. In terms of reducing NRW, locating small leaks may actually represent the best opportunity for long-term water loss reduction. Catching a leak while it is very small prevents the decades of sustained water loss that would occur as it grows into a large leak. While large leaks are important to locate, using technology that can find small leaks on large-diameter pipelines can prevent the development of large leaks and play a vital role in the safe management of a pipeline network.

MCP used SmartBall® leak detection for the inspections. The tool is a free-swimming leak detection platform that operates while the pipeline remains in service. It is capable of completing long inspections in a single deployment and is equipped with an acoustic sensor that identifies acoustic anomalies associated with leaks; the acoustic signature is then analyzed to determine if it is a leak, air pocket, or an external noise.

To track the tool as it traverses the pipeline, SmartBall receivers (SBR) are placed strategically throughout the planned inspection route. As the tool traverses, it makes a sound that is recorded by the receivers to determine its position on the pipeline; this system allows leak locations to be estimated typically within 1.5- meters (6-feet) of the actual leak location.

Due to a 12 bar pressure at the pump station, a new high pressure insertion cap was designed and fabricated to assist with insertion procedure together with a pulley system that allowed the SmartBall insertion claw to be pushed into the pipeline. In order to ensure the highest level of accuracy, additional SBR points were mounted to track the tool closely and a mobile SBR unit was also used. At the reservoir, a small-diameter net was used to retrieve the tool after the inspection was completed.

Results
Upon completion of the inspection, data analysis revealed four acoustic anomalies resembling leaks despite MCP expecting only one leak along the main. Using updated client estimates and the SmartBall tool’s joint detection feature, Pure identified the exact location of three of the four leaks with an accuracy of less than 0.5 meters, including the known leak. The fourth leak verification has been deferred by MCP until a later date. The close location accuracy was confirmed after MCP excavated the leak locations for repair. In addition to the accuracy, the inspection was also successful in identifying small leaks. The leaks confirmed through excavation were as small as ~0.1 liters per minute.

Based on the inspection, MCP was very satisfied with the technology and information that will be used for future management of their network.

Case Study

The Netherlands faces unique challenges with their underground pipe networks due to their proximity to numerous dykes that regulate water levels.

Because pipe failures can lead to drastic consequences for Dutch infrastructure, Waternet undertook a leak detection program for three major pipelines that pass various critical infrastructure including dykes, motorways and airport runways.

Extensive testing was done by officials and Pure Technologies prior to the inspection to ensure the technology could offer a comprehensive leak assessment of the pipeline’s condition.

Project Details

Services
SmartBall® leak and gas pocket inspection
Timing
2013-2014
Pipe Material
PCCP
Inspection Length
195 km (121 miles)
Diameter
1200mm-1500mm (48-60 inch)
Transmission Type
Water

Project Highlights

195kms

of pipelines inspected

3

leaks located

3

leaks verified

Risk mitigated on critical pipeline
Challenge
Most of the Netherlands is situated under sea level, and a large system of dykes protects the land from rising water, while also connecting villages and cities. Water pipelines are often laid in close proximity to the dykes, meaning burst pipes would have devastating e­ffects on the road infrastructure and the surrounding communities.

Today, the aging dyke system is eroding the pipelines foundation causing stress and increasing the likelihood of failures. As a result of several incidents with failing or leaking pipelines in the vicinity of dykes, their owners issued a decree that required water utilities to prove the integrity of its buried assets. Waternet, the regional public water authority for Amsterdam, identified several pipelines of particular concern where a small leak from a pipeline could impact dyke integrity and a risk analysis discovered areas of pipe weakness. Based on these results, authorities determined that further testing in the form of inline leak detection should be performed.

Before embarking on inline leak detection, local officials required several rounds of extensive testing of the proposed technology to demonstrate e­ffectiveness in detecting and locating small leaks in the pipeline. In addition, since the scope of inspection included approximately 180 km of concrete pipelines, the leak detection technology had to demonstrate the ability to inspect long sections of pipe for the project to be most e­ffective.

Solution
Waternet partnered with Pure Technologies to perform inline inspections on three separate pipelines.

The SmartBall® leak detection tool was chosen to assess the integrity of the pipelines and to find leaks along the length of the pipe. The SmartBall tool is a free-flowing leak detection platform that operates while the pipeline remains in service. It is capable of completing long inspections in a single deployment and is equipped with an acoustic sensor that identifies acoustic anomalies associated with leaks and air pockets.

Typically inserted through an existing valve, it travels with the water flow recording the acoustic environment within the line. The SmartBall tool is then removed by either deploying a net at a predetermined extraction point or at another discharge point of the pipeline. The data is stored on the device and analyzed upon completion of the inspection. It is able to travel through long sections of pipe gathering approximately 18 hours of data, making it the ideal solution for the long pipelines of the Waternet leak detection program.

Calibration tests were done to conform to the strict requirements implemented by the dyke owners who wanted clear indications on the lower leak detection limit specific to the composition of the pipe. A calibration stack was developed and extensive tests were performed, simulating leaks to create a calibration curve for various leak sizes. The tests proved SmartBall could detect the leaks smaller than the threshold set by the dyke owners.

Results
Pure Technologies performed SmartBall inspections for Waternet along the WRK pipelines. These pipelines run mainly through rural farmland but also cross through critical dyke systems.

The first portion of the inspection began in 2013 when 146 kilometres of pipeline was broken into eight lengthy inspections. In 2014 the remaining 49 kilometres were inspected. Three leaks were found and verified during the inspection of the entire 195 kilometres of pipeline.

Pure Technologies worked closely with Waternet to fulfill the comprehensive requirements of the leak detection program required by the utility. The importance the dyke system to the protection of the country’s infrastructure and communities mean the integrity of the pipelines must be maintained. The inline leak detection program gave Waternet the necessary information to fulfill their commitment to the dyke owners, and help extend the life of these critical pipelines.

Case Study

The Milwaukee Metropolitan Sewerage District (MMSD) takes a proactive approach to water management initiatives, as evidenced in the condition assessment of the Franklin-Muskego Force Main.

Ownership of the pipeline is shared between the City of Muskego and MMSD, the government agency that provides water management services for about 1.1 million people in 28 communities in the Greater Milwaukee Area.

In 2015, Pure Technologies (Pure) worked closely with MMSD to perform a detailed condition assessment of the approximately 25-year old ductile iron pipeline. The purpose of the assessment was to identify the structural condition of the metallic force main, and included pressure monitoring, a SmartBall® leak and gas pocket detection survey, and a PipeDiver® electromagnetic inspection of the pipeline.

Project Details

Services
SmartBall® Leak and Gas Pocket Detection
PipeDiver® Electromagnetic Inspection
Transient Pressure Monitoring
Structural Engineering
Timing
2015
Pipe Material
Ductile Iron
Inspection Length
2.9 miles (4.7 kms)
Diameter
20-30 inches (500-750mm)
Transmission Type
Wastewater

Project Highlights

Inspection identified 13 pipe sections with electromagnetic anomalies

Defects ranged from 20-55% wall loss

Transient pressure monitoring indicated pipeline operating within design capacity

Challenge
The Franklin-Muskego Force Main carries wastewater along approximately 3 miles of 24-inch and 30-inch ductile iron pipe (DIP). One of the challenges in assessing DIP is determining if the pipe has undergone any wall thickness loss due to internal or external corrosion, which are the primary causes of failure. DIP in water service with a cement mortar lining generally has fewer internal corrosion failure rates, unless damaged during handling and installation, or later as a result of 3rd party damage. This is not the case when DIP is used in a force main, where internal corrosion is the primary cause of failure.

Gas pockets are of significant concern as concentrations of hydrogen sulfide gas within wastewater may cause corrosion and eventual breakdown of the pipe’s exposed surface. In a force main, identifying internal areas with potential corrosion is challenging, as traditional gravity pipeline inspection techniques are often not applicable to in-service pressurized pipelines.

One method for assessing gas pockets is to locate air release valves (ARVs) or other high points along the alignment and conduct test pit investigations in those areas. While this is a valid method for locating potential gas pocket locations, additional gas pockets may occur due to differential settlement, improper installation or non-functioning ARVs. Desktop surveys may not identify and locate all gas pockets along a pipeline, which is why Pure recommends other more precise survey methods.

Solution
To evaluate the condition of the Franklin-Muskego force main, Pure recommended in-line condition assessment. This included inspecting for the presence of gas pockets, using electromagnetics for assessing the condition of the pipe wall and structural engineering to evaluate the significance of defects found.

In October 2015 Pure performed a SmartBall leak and gas pocket detection survey and a PipeDiver electromagnetic inspection of the Franklin-Muskego Force Main. The SmartBall platform is a free-swimming tool that uses acoustics to detect leaks and gas pockets while the pipeline remains in full service. Pure’s flexible, free-swimming PipeDiver tool collects electromagnetic (EM) data that is used to measure the relative wall thickness of the cylinder – the main structural component of the pipeline. With electromagnetics onboard, PipeDiver can identify localized areas of wall loss in the cylinder of the pipe, and broken bar wraps in BWP, all while the pipeline remains in service.

Results
The results of the C150 design check showed that the pipe’s nominal wall thickness is sufficient for current loading conditions. Transient pressure monitoring indicated that over the period of monitoring, the pipeline operated within its design capacity.

Through the PipeDiver inspection, 13 pipes were found to have a total of 16 electromagnetic anomalies consistent with localized wall loss, ranging between 20 percent to 55 percent wall loss. At the time of writing, MMSD was making plans to excavate and repair one pipe section with three areas of pipe loss ranging from 35 percent to 55 percent wall loss. The results of the condition assessment indicate that the Franklin-Muskego Force Main is in good condition.

While the assessment recognized several areas with an increased likelihood of failure, overall the data was good, and coupled with Pure’s engineering recommendations, gave all stakeholders confidence in the health of pipeline for the near foreseeable future.

For utilities with large-diameter networks, waiting for failures to occur before repairing or replacing highly critical mains is not an option.

Massive pressured water lleak on a street

With a large amount of buried water infrastructure reaching the end of its service life, operators have every incentive to take a proactive approach to asset management.

Nowhere is this more critical than in busy urban centres. The fallout from an unexpected failure can have major societal costs, and greatly diminish public confidence in the utility.

Asset management begins with condition assessment

Successful asset management begins with condition assessment, the point at which problems and challenges are understood and shaped into definitive plans from both an operational and financial perspective.

To proactively address their pipeline conditions, operators today have access to variety of tools, technologies and engineering analysis that allow for a comprehensive condition assessment of large-diameter pressure pipes, for both water and wastewater systems.

“Unfortunately there is no ‘silver bullet’ with regard to condition assessment technologies,” said Mike Wrigglesworth, Senior Vice President of Pure Technologies. “Each pipeline is unique, and no single technology is the fix for all situations. A combination of factors, from pipe material to soil conditions, operational challenges, age, installation and third party factors will all play a role in the likelihood of failure. Combined with the consequence of failure, a risk-based approach can then be used to select the best condition assessment tool or technologies.”

Matching assessment technology with the pipeline conditions and project goals

While operators can now deploy a number of data-based tools and techniques to assess pipeline conditions, each technology also comes with varying degrees of limitation. For instance, while magnetic flux leakage (MFL) tools provide the highest resolution data for steel pipe, MFL is of limited value for concrete pipe.

Medium resolution techniques such as electromagnetics can identify localized areas of wall loss on metallic pipes such as ductile iron and steel, but not on cast iron pipe as cylinder thickness is often too thick and material properties vary considerably, negatively affecting results. In both cases, it is often prudent to deploy leak detection technologies, as studies show joint defects lead to leaks, and leaks are precursors to failure.

“Often the best solution is to use different but complementary technologies to collect robust condition data that is then evaluated using engineering analysis against a comprehensive risk of failure versus a consequence of failure analysis.”

Sahara® Leak and Gas Pocket Detection

Pure’s proprietary Sahara® inspection platform is a tethered, multi-sensor tool that can identify acoustic-based leaks, gas pockets and visual anomalies in real time, with no disruption to service.

The Sahara tool features a small parachute that uses the product flow to draw the sensor through the pipeline while being controlled from the surface.

SmartBall® Leak and Gas Pocket Detection

SmartBall® is a multi-sensor tool used to identify a variety of conditions in pressurized pipelines. The tool is easy to deploy through existing pipeline features, and travels untethered with the product flow, collecting information.

The tool’s highly sensitive acoustic sensor can locate small leaks and gas pockets, with typical location accuracy within 6 feet (1.8 m).

PipeDiver® Condition Assessment

PipeDiver® is a free-swimming condition assessment tool that operates while the pipeline remains in service.

Originally designed for use in PCCP, the tool has electromagnetic sensors to identify and locate broken prestressing wire wraps. For metallic pipelines, the optimized PipeDiver has the ability to pinpoint localized areas of wall loss.

The tool is also able to deliver video images from inside the pipe.

PipeWalker™ Condition Assessment

The PipeWalker tool provides a viable option for pipeline condition assessment in situations where the pipe is dewatered or where the option to dewater is available.

The tool is equipped with electromagnetic sensors for detecting wire wrap breaks on PCCP pipes and for detecting corrosion on metallic pipes.

PureRobotics® Pipeline Inspection

PureRobotics® is a depth-rated robotic pipeline inspection system that can be configured to inspect pipe applications 24-inches and larger.

Tethered by a high-strength fiber optic cable, the crawler is capable of performing multi-sensor inspections in dewatered pipes or while submerged in depressurized pipes.

The crawler features HD digital CCTV, and can be equipped with electromagnetic sensors, Inertial Mapping, 3-D LIDAR, LASER, SONAR and other tools upon request.

Matching the level of resolution to the risk of the line

While there are a variety of approaches available for assessing a pipeline’s condition, much of an operator’s effort must go into matching the level of resolution of the approach to the overall risk of the line.

The idea is to put the highest resolution technologies on the most critical lines. In the end, the goal of deploying a particular technology (or complementary technologies) is to identify and locate the areas that need rehabilitation or repair as opposed to wholesale replacement of those lines.

Armed with the right information, operators can determine remaining useful life, and confidently move forward to prioritize and target capital spending, while avoiding failures.

The first time new parties come together to work on a pipeline inspection project, they face a lot of pressure to perform.

The team must instill trust and understand each other to ensure the project goes off without a hitch. In this instance, that’s what happened when Pure Technologies (Pure) and its long-time partner WRc came together with;Irish Water, Cork County Council (CCC) to assess and address the condition of a critical water main in the City of Cork, Ireland.

As this was the first collaborative project among the four groups, it was also a test of the planning expertise, engineering skills and technology advances for Pure Technologies and WRc to impress upon Irish Water and Cork County Council. In the end, the inspection was successful, lessons were learned, and a positive new relationship was forged.

Aerial view of the City of Cork

Project Begins With Six Months of Planning

After six months of planning, in March 2017, Irish Water and its consultant WRc engaged Pure Technologies to conduct a non-destructive evaluation of approximately six (6) kms (3.7 miles) of 1500mm (60-inch) and 1200mm (48-inch) prestressed concrete cylinder pipe (PCCP) sections in the water main between Chetwynd reservoir and Carrs Hill, using the SmartBall® pipeline inspection platform.

 

 

SmartBall tool provides acoustic signature related to leaks and gas pockets

For the Inniscarra Water Main inspection, Pure Technologies deployed its proprietary SmartBall technology, a multi-sensor tool used to detect and locate the acoustic signature related to leaks and gas pockets in pressurized pipelines. The tool has the ability to inspect long distances in a single run, and while the SmartBall is deployed, the pipeline remains in service, limiting disruption to customers.

Unlike traditional listening tools like correlators, which have limited success on large diameter pipes, the free-flowing SmartBall technology provides a high degree of accuracy, because as the device travels along the pipeline, it continuously records the acoustic environment within the line. All data is stored onboard the device and later evaluated to determine the presence and location of any leaks or pockets of trapped gas.

Tool tracked at known points along the pipeline alignment

 

During inspection, the SmartBall tool’s location is tracked at known points along the alignment to correlate the inspection data with specific locations. As the SmartBall tool approaches a leak, the acoustic signal will increase and crescendo at the point when the tool passes the leak.

From insertion to extraction, the SmartBall inspection took a little over six hours, with no unexpected events that were not anticipated during the planning stage.

As the SmartBall was extracted, it was met with a round of roaring applause from assembled team members.

Results lead to effective management of finances and risk

Based on the inspection data, our analysts reported three (3) anomalies characteristic of leaks, and zero (0) acoustic anomalies characteristic of pockets of trapped gas.

Overall, both Irish Water and Cork County Council were pleased with the project results, as they were able to understand the overall condition of the pipeline and make an informed decision for capital improvements of the Inniscarra Water Main. The project demonstrates how Irish Water and CCC can use actionable data to effectively manage their finances and risk, while continuing to provide the community with a safe and reliable delivery of drinking water.

 

It’s a major event when you’ve been asked to perform a first in terms of a pipeline inspection.

For starters, you must feel confident in the inspection technology you recommend. Second, you hope that all your planning for deployment and unexpected contingencies has been anticipated. And finally, with so many eyes focused on the outcome, you hope the first inspection of its kind goes off without a hitch.

That was the case in May 2017, when the Dutch utility Brabantse Delta retained Pure Technologies (Pure) to perform a SmartBall® inspection on a critical untreated wastewater pipeline near the city of Zevenbergen, located in the North Brabant province.

For Pure Technologies, this project marked the first SmartBall acoustic inspection of a rising [force] main in the Netherlands.

Brabantse Delta operates AWP-1, a pre-stressed concrete cylinder pipe (PCCP) pipeline that transfers industrial wastewater from the Moerdiijk pump station to the Hoven pump station. The 800mm (32-inch) pipeline traverses a lot of farmland near the city, which made accessing buried manholes somewhat of a challenge, as many of these were located on private land, making excavation difficult.

Gas pockets are of concern on wastewater lines

The pipeline has not experienced regular failures, but Brabantse Delta was looking for solutions to establish a baseline condition and manage the risk of this critical asset. The primary purpose of the SmartBall inspection was to identify and locate leaks and pockets of trapped gas along the approximately 8.3 km (5.1 mile) pipeline.

We were pleased the overall execution and excited that the SmartBall tool was able to collect inspection data while the force main remained in operation.” Ing. R van Wanrooij, Adviser Civil Engineering, Brabantse Delta

Gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall.  This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

The SmartBall tool was chosen as an inspection platform for its sensitivity to small leaks and gas pockets and for its ability to inspect long distances in a single deployment. Minimal pipeline modifications are required for insertion and extraction.

SmartBall tool tracked at known points along the pipeline alignment

The free-swimming, acoustic-based SmartBall® tool is inserted into the pipeline flow, and after traversing the inspection length, the tool is captured and extracted at a point downstream.

During inspection, the SmartBall tool’s location is tracked at known points along the length of the pipeline to correlate the inspection data with specific locations. As the SmartBall tool approaches a leak, the acoustic signal will increase and crescendo at the point when the tool passes the leak.

Unlike traditional listening tools like correlators, which have limited success on large diameter pipes, the free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls inside the pipe, it can inspect every inch of the main to detect leaks and gas pockets.

Prior to the execution of the project, Pure Technologies reviewed the site and all pipeline drawings. The only real inspection challenge was taking into account the limited number of SmartBall receiver tracking units, as some of the buried manholes were located on private farms.

Inspection results

The inspection went smoothly, and all data successfully collected. From insertion to extraction, the SmartBall inspection took under 5 hours, with no unexpected events thanks to cooperative planning and full support of the Brabantse Delta team.

Preliminary data indicated no leaks and zero (0) acoustic events associated with pockets of trapped gas. Entrained air was present throughout the pipeline, but no events of significance were detected. Entrained air is a migratory event, meaning its location is dynamic and changes over time with the operational flow. These events are expected to move throughout the pipeline, and locations are specific to the time of the inspection.

Overall, Brabantse Delta was pleased with the execution, and excited to know there was an inspection tool that gave them a better understanding on the overall condition of the AWP-1 pipeline. The project demonstrates how Brabantse Delta uses actionable data to effectively manage risk, while continuing to provide the community with a safe and reliable delivery of untreated wastewater.

Case Study

The Milwaukee Metropolitan Sewerage District (MMSD) takes a proactive approach to water management initiatives, as evidenced in the recent condition assessment of the Franklin-Muskego Force Main.

In 2015, Pure Technologies (Pure) worked closely with MMSD to perform a detailed condition assessment of the approximately 25-year old ductile iron pipeline. The purpose of the assessment was to identify the structural condition of the metallic force main, and included pressure monitoring, a SmartBall® leak and gas pocket detection survey, and a PipeDiver® electromagnetic inspection of the pipeline.

Project Details

Services
SmartBall® leak and gas pocket detection

PipeDiver® electromagnetic inspection

Pressure monitoring

Structural engineering

Timing
2015
Pipe Material
Ductile Iron
Inspection Length
2.9 miles
Diameter
20-inch to 30-inch
Transmission Type
Wastewater

Project Highlights

Condition assessment on

4.7km

of feedermain pipes

Data identified

8

pipes with electromagnetic anomalies consistent with broken pressing wire wraps

HD-CTTV identified

3

pipes with damaged internal mortar and exposed cylinder

Challenge

The Franklin-Muskego Force Main carries wastewater along approximately 3 miles of 24-inch and 30-inch ductile iron pipe (DIP).

One of the challenges in assessing DIP is determining if the pipe has undergone any wall thickness loss due to internal or external corrosion, which are the primary causes of failure. DIP in water service with a cement mortar lining generally has fewer internal corrosion failure rates, unless damaged during handling and installation, or later as a result of 3rd party damage.

This is not the case when DIP is used in a force main, where internal corrosion is the primary cause of failure. Gas pockets are of significant concern as concentrations of hydrogen sulfide gas within wastewater may cause corrosion and eventual breakdown of the pipe’s exposed surface.

In a force main, identifying internal areas with potential corrosion is challenging, as traditional gravity pipeline inspection techniques are often not applicable to in-service pressurized pipelines.

One method for assessing gas pockets is to locate air release valves (ARVs) or other high points along the alignment and conduct test pit investigations in those areas. While this is a valid method for locating potential gas pocket locations, additional gas pockets may occur due to differential settlement, improper installation or non-functioning ARVs.

Desktop surveys may not identify and locate all gas pockets along a pipeline, which is why Pure recommends other more precise survey methods.

Solution

To evaluate the condition of the Franklin-Muskego force main, Pure recommended in-line condition assessment. This included inspecting for the presence of gas pockets, using electromagnetics for assessing the condition of the pipe wall and structural engineering to evaluate the significance of defects found.

In October 2015 Pure performed a SmartBall leak and gas pocket detection survey and a PipeDiver electromagnetic inspection of the Franklin-Muskego Force Main.

The SmartBall platform is a free-swimming tool that uses acoustics to detect leaks and gas pockets while the pipeline remains in full service.

Pure’s flexible, free-swimming PipeDiver tool collects electromagnetic (EM) data that is used to measure the relative wall thickness of the cylinder – the main structural component of the pipeline. With PureEM® onboard, PipeDiver can identify localized areas of wall loss in the cylinder of the pipe, and broken bar wraps in BWP, all while the pipeline remains in service.

Results

The results of the C150 design check showed that the pipe’s nominal wall thickness is sufficient for current loading conditions. Transient pressure monitoring indicated that over the period of monitoring, the pipeline operated within its design capacity.

Through the PipeDiver inspection, 13 pipes were found to have a total of 16 electromagnetic anomalies consistent with localized wall loss, ranging between 20 percent to 55 percent wall loss. At the time of writing, MMSD was making plans to excavate and repair one pipe section with three areas of pipe loss ranging from 35 percent to 55 percent wall loss.

The results of the condition assessment indicate that the Franklin-Muskego Force Main is in good condition.

While the assessment recognized several areas with an increased likelihood of failure, overall the data was good, and coupled with Pure’s engineering recommendations, gave all stakeholders confidence in the health of pipeline for the near foreseeable future.

Case Study

Evides Watercompany was open to exploring new ways to reduce risks and extend the service life of their buried infrastructure. In particular, Evides wanted to assess the condition of its TL2.60 pipeline, a cement-lined 800mm (31.5 inch) steel pipe, with 2.8 kilometers (1.7 miles) of the inspected pipeline running along an important highway connecting Rotterdam to The Hague.

To assist in the condition assessment, Evides elected to deploy the 24-sensor PipeDiver®, an innovative tool from Pure Technologies designed to assess and address large-diameter metallic pipelines.

Project Details

Services
SmartBall® leak detection

PipeDiver® condition assessment

Timing
2016
Pipe Material
Steel
Inspection Length
2.84 km (1.7 miles)
Diameter
800mm (31.5-inch)
Transmission Type
Water

Project Highlights

 

Four (4)
pipes identified with anomalies

60% wall loss
on one pipe section identified by EM data

Zero (0)
leaks detected

 

HD-CTTV identified
estimated savings due to inspection: 1.1M Euros

 

Challenge
Prior to inspection, Evides created a series of predetermined defects made on a specific pipe segment in a research environment. The objective was to validate the tool against a range of known defects in a pipe with the same characteristics as the pipe inspected. During this process, all defects within the stated sensitivity were detected by the 24D PipeDiver tool at the precise location, providing confidence for the upcoming live inspection.

PipeDiver is a flexible, free-swimming condition assessment tool for pressurized water and wastewater pipelines. The video-equipped tool is ideal for critical pipelines that cannot be removed from service due to a lack of redundancy or operational constraints.

Solution
While PipeDiver has traditionally been deployed on prestressed concrete pipe to identify and locate broken prestressing wire wraps, the 24-detector PipeDiver has been specifically developed for metallic pipelines. For the Evides inspection, the PipeDiver tool with 24 electromagnetic sensors was used to locate and identify steel pipes with anomalies associated with corrosion or reduced wall thickness.

This Evides inspection marked the first condition assessment of metallic pipe using the 24D PipeDiver in Europe, an exercise that confirmed the validity of the tool’s sensor technology and validate once more the effectiveness of the platform to inspect pipelines.

The insertions went off without a hitch, and the PipeDiver sailed through the pipeline obstacle course with ease, gathering EM data along the route.

Results
Of the approximately 237 pipe sections inspected during the real inspection, four pipes were identified with anomalies indicative of cylinder wall loss, ranging between 30 percent and 60 percent. The wall loss defects ranged from 10.8 to 37.7 cubic centimeters (0.64 to 2.30 cubic inches).

After the inspection, three out of the four locations were dug-up to verify the reported defects, using non-destructive ultrasonic techniques. On each of the locations, the defects were found, and the actual material loss was in the range of the reported material loss.

Overall, the results proved the worth of PipeDiver as an advanced condition assessment tool able to deliver precise, actionable data on metallic pipes. The exercise showed the PipeDiver tool as a cost-effective solution versus methods that have operational constraints or require a shutdown or dewatering, or in this case, taken out of service. Evides estimated capital savings of 1.1M Euros as a result of the inspection and repairs.

Quote

“PipeDiver proved to be a suitable tool for one of our most important inspection needs: Corrosion of cement-lined steel pipes. We are especially glad the tool was able to pass a butterfly valve, and to be inserted and extracted through 600mm manholes, as this greatly improves operability and cost effectiveness.”

–Bart Bergmans, Project Manager, Infrastructure Asset Management, Evides Watercompany

Case Study

Metropolitana Milanese (MM) manages the integrated water services for the City of Milan, which has more than 2,295 kilometers (1,430 miles) of pipeline in their network.  MM identified a critical transmission main as a priority for inspection, and proactively assessed a nine kilometer section using the SmartBall inline leak detection tool.  The Assiana Linate Transmission Main was selected as a high value main due to its location in the heart of Milan. A rupture would prove to be costly and disruptive to the city, and Metropolitana Milanese had no prior condition information on the main’s integrity.

Project Details

Services
SmartBall® Inline Leak Detection
Timing
2015
Pipe Material
Steel
Inspection Length
9 kilometers (5.5 miles)
Diameter
1200mm (48-inch)
Transmission Type
Water

Project Highlights

23
leaks in 9km identified by SmartBall® inspection

Inspection identified high concentration of leaks in specific zones

Program costs expected to be repaid in 3 years from water savings

Challenge

Assessing the condition of buried infrastructure can be challenging and difficult to predict. Traditional belief dictates the condition of the pipe is directly associated with its age, however extensive field work shows this is not always the case. One-hundred year old pipes can be dug up in like-new condition, and newer pipes can show extensive damage due to operational, environmental, and installation factors. While the Assiano Linate Transmission main, a 1200mm steel transmission main situated in the heart of Milan, was installed in 1982 and therefore is not particularly old, its important nature to the network made it a priority for assessment. Reducing Non-Revenue Water (NRW) is a major concern for municipalities and a proactive approach to pipeline inspection is critical to managing investments.

Solution

Metropolitana Milanese proactively assessed a nine kilometer section of the Assiano Linate Transmission main using the SmartBall leak detection tool. This technology was chosen to allow the transmission main to remain in operation during the inspection, a critical requirement due to the networks served by the main.

The tool is a free-flowing leak detection platform that operates while the pipeline remains in service. It is capable of completing long inspections in a single deployment and is equipped with an acoustic sensor that identifies acoustic anomalies associated with leaks and air pockets. The acoustic signature is then analyzed to determine if it is a leak, air pocket, or an external noise.

Identifying leaks small or large contributes to maintaining the condition of a transmission main. In metallic pipe materials, a catastrophic failure is often preceded by a period of leakage, so identifying and repairing leaks can help to reduce water main failures, as well as reduce Non-Revenue Water loss not detected in water balances.

Results

The SmartBall inspection identified 23 large leaks within 9 kilometers of pipeline inspected. One area of high leak concentration detected 8 leaks in a short 240 meter section. Although Metropolitana Milanese chose a low resolution tool for their assessment program, the concentrated location of the leaks resulted in an accurate condition assessment by finding the weak link in the transmission main.

While many leaks were detected during the inspection, because the overall flow of the main is high, the leakage was undetectable with traditional metering equipment. However, the potential savings from the leak detection program are significant enough to have a positive impact on the city’s Non-Revenue Water Program, and its finances.  Although the production cost of water is relatively low, the expected savings in water loss from repairing the leaks will pay back the costs of the project in approximately three years, including the cost of repair to the damaged section.

Furthermore, the results indicated that limited portions of the main have damage while most of the pipeline appears to be in relatively good condition. This gives a targeted area for repairs without the need to dig up large sections of the pipeline – a costly and time-consuming process.

By determining the specific locations of leaks on the Assiano Linate Transmission Main, Metropolitana Milanese will be able to reduce its NRW and has gained a better understanding of the overall condition of the pipeline. This will aid in future capital planning and will also provide a valuable study into determining the external factors that might be causing the leakage.

Focused repair works for the leaks will allow the utility to extend the life of the pipeline and reduce water loss, thus improving the overall service to its customers. The final data from the inspection will be presented in an innovative asset management overview to Metropolitana Milanese.

Quote

“SmartBall has been a cost-effective solution to assess the condition of a very critical pipe in our network without causing any negative impact in our daily operations.”

–Metropolitana Milanese

Case Study

In 2015, Utilities Kingston retained the services of Pure Technologies to perform a condition assessment on the Dalton Avenue (North End) Pump Station Force Mains.

At approximately 35 years, each asset was entering a critical stage of its life-cycle. The purpose of the assessment was to identify the structural condition of the 450mm and 600mm force mains, both of which are approximately 1,550 meters long and follow a parallel route.

The assessment included transient pressure monitoring, a SmartBall® leak and gas pocket detection survey, and a PipeDiver® electromagnetic inspection of the pipeline.

Project Details

Services
SmartBall® leak and gas pocket detection
PipeDiver® electromagnetic inspection
Transient pressure monitoring
Risk of failure evaluation
Timing
2015
Pipe Material
Ductile Iron, Steel, Reinforced Concrete
Inspection Length
3.05 kilometers (1.9 miles)
Diameter
450mm to 600mm (18 inch to 24 inch)
Transmission Type
Wastewater

Project Highlights

 

3.05 kms cumulative distance of survey

 

1 acoustic anomaly associated with transient gas (SmartBall inspection)

55 pipes with EM anomalies characteristic of localized wall loss (PipeDiver inspection)

 

Zero leaks detected

 

Challenge

The older of the two force mains is 450mm (18-inch) in diameter, constructed of ductile iron built in the late 1950s, and had failed several times over its lifetime. The newer of the two force mains is 600mm (24-inch) in diameter, built from reinforced concrete (RCP) and steel, with two sections of suspected metallic pipe, which was not confirmed in the profile drawings.

As the pipe material specifics were still unknown at the time of the inspection, Pure Technologies elected to conduct a PipeDiver run to accommodate both possible types of pipe material – assumed by all to be bar wrapped pipe (BWP) and prestressed concrete cylinder pipe (PCCP).

Historically, it has proven challenging to assess the condition of pressurized mains that carry sewage, especially those made with ferrous material. Metallic force mains have special operational challenges that don’t apply to gravity sewer systems, and due to the presence of solids in the flow, force mains represent a far more abrasive environment than potable water systems.

Gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Solution

Transient pressure monitors were installed on the header of each force main and for nearly five weeks the recorded pressure data was used to understand the operational and surge pressures within the force mains and their impact on the structural integrity of the pipelines.

Utilities Kingston began the initial force main condition assessment by deploying SmartBall technology, a free-flowing multi-sensor tool used to detect and locate the acoustic sounds related to leaks and gas pockets in pressurized pipelines. The tool has the ability to inspect long distances in one run, and requires only two access points, one for insertion and one for extraction. SmartBall is an effective condition assessment tool for force mains, which don’t typically feature butterfly valves, allowing the SmartBall to roll through the line quite easily, collecting acoustical data.

Following the SmartBall run, UK deployed the free-swimming PipeDiver assessment tool, which travels with the product flow, and utilizes flexible petals to navigate butterfly valves, tees and bends in the pipeline. Originally designed for use in pressurized concrete cylinder pipes (PCCP), the tool has specialized electromagnetic sensors (PureEM) to identify and locate broken prestressing wire wraps, (one of the main structural components and failure modes of a prestressed concrete pipe).

Historically, technologies available to assess the condition of metallic pipe have been limited. This led Pure TEchnologies to develop the specialized PipeDiver for metallic pipes, equipped with advanced electromagnetic technology to identify broken bars in bar wrapped pipe, and localized areas of wall loss in BWP, steel and ductile iron.

Results

In the end, one (1) acoustic anomaly characteristic of transient gas on the 450mm force main was identified with data collected during the SmartBall inspection. No acoustic anomalies were identified within the 600mm force main during the SmartBall inspection.

Of the 650 pipes inspected with the PipeDiver tool, a total of 55 pipes in the 450mm Dalton Avenue Pump Station force main had electromagnetic anomalies characteristic of localized wall loss. These results represent a high percentage of distress along the length of the pipeline and indicate a high risk of failure.

Recommendations included an extended period of transient pressure monitoring as the maximum pressures recorded exceed the 600mm RCP design limitations. Utilities Kingston should also review the pressure reducing valves at the pump station and investigate the operating procedures to determine the cause of the transient pressures.

The fact-finding data collected from both the inspections and transient pressure monitoring gave Utilities Kingston a better understanding of their real, not assumed assets. The results, which included a DIP risk of failure analysis, were used to complete a structural evaluation of the force mains, and have provided Utilities Kingston with actionable information regarding any necessary repairs or rehabilitation.

Since 2007, utilities all over the world have been using the SmartBall® pipeline inspection platform to save millions of dollars in water loss and to fix leaks before they turn into larger problems.


Developed by Pure Technologies (Pure), the tool is trusted by utilities for two main reasons. One is for condition assessment purposes, and the other is for reducing non-revenue water. From a condition assessment perspective, SmartBall® is a proactive tool that can be used as part of a larger holistic approach to help identify problem areas that require repairs before they turn into bigger issues, and also to help utilities prioritize capital spending.

SmartBall inside a pipe.

Detect and locate acoustic sounds related to leaks and gas pockets

The primary purpose of the SmartBall tool is to detect and locate the acoustic sounds related to leaks and gas pockets.

“Unlike traditional correlators, the SmartBall sensors travel inline along the pipe, inspecting every inch of the water main to detect potential problems such as leaks and gas pockets. Based on thousands of miles of experience, the SmartBall tool has found three to four times more leaks than trunk main correlators, which are traditionally used in smaller diameter pipes, and are less effective for transmission mains and larger diameter pipes.”

Cam White

Business Line Manager, SmartBall

Deployed for long runs in one inspection for water and wastewater pipelines

What makes the SmartBall tool so remarkable is its ability to get into and out of pipelines very easily, and to be deployed for long runs in one inspection for both water and wastewater pipelines. The tool requires only two access points – one for insertion and one for extraction.

For insertion, the foam-shelled SmartBall tool is placed into a claw, compressed, and then lowered into the line through a 4-inch (100mm) or larger tap, all while the line is pressurized. Throughout the survey, Pure’s inspection team constantly monitors the SmartBall’s position as it traverses the pipeline collecting data.

  • An acoustic sensor listens for leaks and gas pockets.
  • An accelerometer and gyroscope measure the SmartBall’s movement, which can later be used for pipeline mapping.
  • A magnetometer measures the magnetic field coming off the pipe wall, data that can be used to find joints and other pipeline features.
SmartBall extraction process

Multiple insertion and extraction options available

There are many alternative options available to get the SmartBall in and out of a pipeline. Having multiple options reduces the money and effort required by utilities to support the inspection.

Once the inspection is complete, the data is extracted from the ball and sent to Pure’s data analysts where they will identify leaks and gas pockets.

As utility owners know, it can be expensive to excavate, and what SmartBall tool does is provide information that’s accurate, so clients can dig up the pipeline and find the leak the first time.

Rideau Canal, Ottawa

For the City of Ottawa, the SmartBall tool is used to locate “leak-where-predicted”

The “leak-where-predicted” scenario recently happened with the City of Ottawa when Pure deployed its SmartBall inspection platform to locate leaks and pockets of trapped gas along a critical transmission main, as part of a long-term condition assessment program for the municipality.

The Baseline Road Water Transmission Main is a high priority 1220mm (48-inch) diameter pipeline comprised of lined cylinder pipe (LCP).

For the City of Ottawa project, five (5) surface-mounted acoustic sensors were placed along the pipeline to track the SmartBall tool during the inspection. The SmartBall device was inserted into the pipeline through a 100mm drain near a hospital. Acoustic and sensor data was collected and recorded as the SmartBall tool traversed the pipeline for more than three kilometers.

From the survey results, Pure detected one (1) acoustic anomaly characteristic of a leak and zero (0) anomalies consistent with pockets of trapped gas.

The “leak-where-predicted” scenario recently happened with the City of Ottawa when Pure deployed its SmartBall inspection platform to locate leaks and pockets of trapped gas along a critical transmission main, as part of a long-term condition assessment program for the municipality.

The Baseline Road Water Transmission Main is a high priority 1220mm (48-inch) diameter pipeline comprised of lined cylinder pipe (LCP).

For the City of Ottawa project, five (5) surface-mounted acoustic sensors were placed along the pipeline to track the SmartBall tool during the inspection. The SmartBall device was inserted into the pipeline through a 100mm drain near a hospital. Acoustic and sensor data was collected and recorded as the SmartBall tool traversed the pipeline for more than three kilometers.

From the survey results, Pure detected one (1) acoustic anomaly characteristic of a leak and zero (0) anomalies consistent with pockets of trapped gas.

SmartBall inside a pipe and working zone map

Ground microphones fail, SmartBall tool succeeds

Although Pure was confident in the SmartBall leak detection data, sometimes it’s worth a try to verify an anomaly with a complimentary technology. In this instance, ground microphones, regarded as a conventional a leak detection tool, were deployed to try and detect leak sounds. Although the suspect area was marked, neither Pure nor the client could pick up leak-related sounds from the ground microphone.

Even though the leak was not picked up by the ground microphone, Pure was confident that the acoustic signature from the SmartBall was caused by a leak, based on more than 15 years of experience identifying leaks. That confidence and experience proved right, and when the suspected area was excavated, the leak was located within a meter of where the data analyst calculated the leak to be.

The results gave the City of Ottawa actionable data regarding the condition of their pipeline, and the City was able to fix the leak reducing non-revenue water loss and any potentially costly damage caused by the leak. It’s a great example of a proactive utility taking efforts to improve the reliability of its services.

Lyon City Square

With a population of nearly 500,000, Lyon is the third largest city in France, a vibrant metropolis known for its modern Confluence district as well as Renaissance palaces and Roman ruins that date back more than 2,000 years.

While Lyon’s historic architecture has aged well, the same cannot be said for its buried infrastructure. In June of 2016, Suez retained the services of Pure Technologies (Pure) to perform a SmartBall® inspection of two critical water mains, the Grigny Water Main and Les Halles Water Main, both located near Lyon. The inspections, conducted over two days, were part of a long-term condition assessment program for the city.

As an industrial services and solutions company specialising in securing and recovering resources, Suez provides its customers (local authorities, industry and consumers) with concrete solutions to address new resource management challenges.

Pipelines constructed of ductile iron and cast iron

The Grigny Water Main is a 500mm (20-inch) cast iron pipeline that transfers Water from the Grigny Pump Station to Saint Romain en Gier. The SmartBall inspection started at a previously installed 150mm (6-inch) tap and ended at a previously installed 150mm tap in Saint Romain en Gier, and covered a distance of approximately 8.6 kilometers (5.3 miles).

The following day Pure deployed a second SmartBall inspection, this time on the Les Halles Water Main, a 400mm (16-inch) ductile iron pipeline that transfers water from Les Halles to Saint Laurent D Chamousset. The purpose of the inspection was to locate and identify leaks and pockets of trapped gas along the 2.9 kilometer (1.8 mile) section of pipeline.

SmartBall under a gas pocket inside a water pipe

SmartBall® tool chosen for ease of use and sensitivity to gas pockets and small leaks

The SmartBall tool was chosen as an inspection platform for its sensitivity to small leaks, minimal pipeline modifications required for insertion and extraction and its ability to inspect long distances in a single deployment. The free-swimming, acoustic-based SmartBall tool is inserted into the pipeline flow, and after traversing the inspection length, the tool is captured and extracted at a point downstream.

During inspection, the SmartBall tool’s location is tracked at known points along the alignment to correlate the inspection data with specific locations. As the SmartBall tool approaches a leak, the acoustic signal will increase and crescendo at the point when the tool passes the leak.

For this project, 13 surface-mounted acoustic sensors (SMS) were placed along the Grigny pipeline to track the SmartBall tool during the inspection. For the Les Halles inspection, five (5) SMS were used to track the tool. SmartBall receivers were connected to the sensors on the pipeline at locations to track the tool during inspection.

An extraction net was used to extract the SmartBall tool once it traversed the entire length of both pipelines, and the data was evaluated by Pure analysts to identify acoustic anomalies associated with leaks and pockets of trapped gas.

Screen with Data Analysis

SmartBall survey detects two leaks and zero (0) gas pockets

The acoustic data recorded by the SmartBall tool was analyzed and cross-referenced with the position data from each SmartBall Receiver (SBR) to determine a location for each acoustic anomaly.

From the results conducted on the Grigny Water Main, Pure detected a total of two (2) acoustic anomalies characteristic of leaks and zero (0) anomalies consistent with pockets of trapped gas. Pure analysts classified one leak as a small leak, and a second as a large leak.

For the survey of the Les Halles Water Main, Pure detected zero (0) anomalies characteristic of leaks and zero (0) acoustic anomalies characteristic of pockets of trapped gas.

The results gave Suez actionable data regarding the condition of the pipelines, and the confidence to move forward on fixing the leaks. It’s a great example of a water authority taking proactive efforts at keeping its network in healthy shape.

SmartBall with case and insertion tools
Big City Landscape View

Rand Water is the largest bulk water utility in Africa and one of the largest in the world, providing bulk potable water to more than 23 million people in Gauteng, parts of Mpumalanga, the Free State and North West – an area that stretches over 31,000 square kilometres. Rand Water’s distribution network includes over 3,300 kilometres of large-diameter pipelines.

In 2015 Rand Water embarked on the largest proactive bulk water pipeline condition assessment  investigation ever in South Africa. An important part of the assessment includes inline non-disruptive leak detection inspections covering just over 2,200 kilometers of Rand Water’s bulk pipeline network.

SmartBall in a case with the laptop used to control it.

SmartBall leak detection platform used for most inspections

The free-swimming SmartBall™ leak detection system is utilized to perform the majority of these inspections. The multi-sensor tool is used to detect and locate the acoustic signature related to leaks and gas pockets in pressurized pipelines. While the SmartBall is deployed, the pipeline remains in service, limiting disruption to customers.

Unlike traditional listening tools like correlators, which have limited success on large diameter pipes, the free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls, it can inspect every inch of the main to detect leaks and gas pockets.

Big pipes

High pressure, high flow pipelines can make insertion and extraction difficult

Due to the vast transfer distances and varying topography within the supply area, the Rand Water system is characterized by pipelines operating under extreme pressures (higher than 16 bar [232 psi] and up to 40 bar [580 psi]) and high flow velocities (higher than 2 m/s), historically beyond safe operating limits of the standard SmartBall insertion and extraction equipment.

This rendered some of the pipelines unsuitable for inspection unless a solution could be found to safely insert and extract SmartBall from a high pressure/high flow pipeline.

Worker inspecting pipe

Pure works with SSIS PIpeline Services to help solve this unique challenge

Pure Technologies embraces research and development (R&D), with a strong design focus on continuously developing new inspection technologies and improve existing systems. SSIS Pipeline Services, which represents Pure Technologies in SA, challenged the Pure R&D team to find a solution for this unique high pressure Rand Water problem.

From this challenge, the Titan system was born.

Introducing Titan insertion and extraction system

Following extensive R&D and pre-delivery testing, the first-of-its-kind enlarged Titan insertion and extraction system was delivered to South Africa in May 2016. The system included a retrofitted high pressure LDEN (Large Diameter Extraction Net) kit capable for use in pressure environments up to 40 bar (600 PSI) and higher.

Workers with high pressure pipes

SSIS staff underwent shop training at the hands of one of the mechanical design engineers from Pure, followed by hands-on training on a number of high pressure, high velocity Rand Water pipelines.

To date, the Titan system has been used safely and successfully on pipelines up to 2900mm in diameter, operating at 2.5 m/s and at pressures up to 18 bar (261 psi). The system’s highest recorded operating pressure was at 23 bar (333 psi) on a 900mm diameter pipeline with 1.5 m/s flow.

Testing the waters, pushing the limits

The Titan system now enables SSIS to safely perform SmartBall leak and gas pocket inspections on high pressure pipelines previously off limits.

The latest successful test illustrates the SSIS commitment to the local water industry through innovation and dedicated support from Pure Technologies. It again proves that no problem is too big to solve, and every challenge can be overcome through dedicated teamwork and cutting-edge innovation.

Gateway of The North City of North Bay

On one hand, it may seem like a waste of capital dollars if you perform a pipeline condition assessment and the final analysis turns up no leaks. Alternatively, you can also look at the no-leak report as a good news validation story, especially when using the information to help establish an asset management plan.

Such was the case for a city of 51,000 situated between the shores of lovely Lake Nipissing and Trout Lake in Northern Ontario.

In September 2016, the  City of North Bay (City) retained the services of Pure Technologies (Pure) to perform a two-phase condition assessment on the Marshall Avenue Force Main (MAFM). The MAFM is a critical 508mm (20-inch) asbestos cement pipeline that services approximately half the city, and transfers wastewater from the Marshal Avenue Pump Station to the North Bay Sewage Treatment Plant.

Aerial picture with sewer map

The City was interested in exploring technologies to help them better understand the actual condition of their force main in order to implement a comprehensive asset management program using the inspection data.

To assist in the assessment, Pure Technologies elected to first conduct transient pressure monitoring, followed by a SmartBall® inspection to acoustically identify and locate leaks and pockets of trapped gas along the pipeline.

Transient pressure monitoring helps understand structural integrity of the pipeline

First, transient pressure monitors were installed at the pump station discharge header. For approximately six weeks, the recorded pressure data was used to understand the operational and surge pressures within the force main and their impact on the structural integrity of the pipeline.

When pipe wall degradation is combined with surge pressures, the likelihood of pipe failure can be significantly increased.  Evaluation of the pump station operation, such as pump start-up mode, typical and peak flows, operating and surge pressures, and surge protection, can provide important information on the stress.

SmartBall with its controls and tools

SmartBall tool provides acoustic signature related leaks and gas pockets

While transient pressure data was collecting, Pure deployed its proprietary SmartBall technology, a multi-sensor tool used to detect and locate the acoustic signature related to leaks and gas pockets in pressurized pipelines. The tool has the ability to inspect long distances in a single run, and while the SmartBall is deployed, the pipeline remains in service, limiting disruption to customers.

Unlike traditional listening tools like correlators, which have limited success on large diameter pipes, the free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls inside the pipe, it can inspect every inch of the main to detect leaks and gas pockets.

From insertion to extraction, the SmartBall inspection took a little over four hours, with no unexpected events as anticipated during the planning stage.

SmartBall functionality chart

Results lead to effective management of finances and risk

Based on the inspection data, Pure analysts reported zero (0) anomalies characteristic of leaks, and 13 acoustic anomalies characteristic of pockets of trapped gas, mostly around air valves.  In particular, gas pockets are of significant concern in force mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall. This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Gas pockets combined with pressure transients can have significant impact on the pipeline, as vacuum conditions may be created. This can cause cavitation at the gas pocket as the transient gas passes, increasing stress on the pipe wall and therefore increasing the risk of failure if the structural capacity has been compromised.

City considering adding more air valves to help expel collecting gas

Based on a hydraulic evaluation of the pipeline, structural fatigue was not a concern, although test pits were recommended to determine asbestos cement thickness and gas pocket mitigation using swabs also recommended. In the near term, the City is considering adding more air valves to the pipeline to help expel collecting gas.

Overall, the City of North Bay was pleased with the project results, as they were able to understand the overall condition of the pipeline and make an informed decision for capital improvements of the Marshall Avenue Force Main. The project demonstrates how the City uses actionable data to effectively manage their finances and risk, while continuing to provide the community with a safe and reliable delivery of wastewater.

Pensacola view from the air

The introductory meeting was pure happenstance. After a well-timed phone call, two unfamiliar parties – a public utility and a business development team from an engineering technology-solutions firm – agreed to meet, learn about each other, and within weeks, begin to collaborate on a master plan of action to comply with a consent order agreement.

The story begins in late 2015, when staff from Emerald Coast Utilities Authority (EUCA), a progressive utility that services water and wastewater systems of Escambia County and the City of Pensacola, Florida, received a call from Pure Technologies. The inquiry was for permission to set up an educational meeting to discuss the pipeline inspection technologies, solutions and engineering services provided by Pure.

SmartBall in a case with the laptop used to control it.
Coincidental to the consent order, ECUA welcomed the opportunity to hear what Pure could bring to table. ECUA commented, “your timing is perfect, and we appreciate the educational meeting and not a sales pitch.”

That fortuitous encounter set the wheels in motion and led to the partnership between Pure, ECUA and its asset management consulting partner, Arcadis – a three-way cooperative that is now helping ECUA develop a comprehensive risk management program for its wastewater network.

Consent order issued for wastewater division

Backtrack to June 2012, when the Florida Department of Environmental Protection (DEP) issued a consent order to Emerald Coast Utilities Authority, with the agreement citing 24 spill events occurring between 2009 and 2010 that the state deemed avoidable within the utility’s collection of wastewater force mains. These force mains range in size from eight to 30-inches in diameter, and are comprised of cast iron pipe (CIP), ductile iron pipe (DIP) polyvinyl chloride pipe (PVC) and high-density polyethylene pipe (HDPE).

Sanitary Sewer Overflows (SSO), or spills, can result from a break in the pipe, or when the system is overwhelmed by heavy rain events. While spills can be caused by accidental breaks in the pipe, an aging infrastructure, with its inherent inflow and infiltration issues, makes a system all the more susceptible to SSO events.

Emerald Coast Pipe Risk Map

ECUA intrigued by the risk model focus offered by Pure and Arcadis

While ECUA engaged with Arcadis as the lead consultant to assist with the requirements of the consent order, the meeting with Pure Technologies gave ECUA the opportunity to learn about Pure’s expertise in developing a comprehensive risk prioritization plan. It also gave them an introduction to Pure’s suite of condition assessment technologies, which includes the innovative SmartBall® leak detection platform, a free-swimming tool that collects acoustic data associated with leaks and gas pockets.

With more than 315 miles of force mains within its network, it was critical for ECUA to first have the right data to make the right decisions on the prioritization of what assets to first Assess and Address®, in order to make effective use of a limited budget and resources. Pure’s experience indicates that less than 10 percent of pipelines have indicators of distress, while even fewer require repair or replacement to extend their useful life.

All the more reason why ECUA was intrigued by the risk model focus offered by Pure and Arcadis.

Using data-driven decision making as part of a risk management program

Pure recognizes the importance of data-driven decision making as part of an effective, comprehensive risk management program. A Pipeline Risk Prioritization (PRP) is good starting point for a larger proactive program as it helps to focus resources on the highest risk assets and provides justification as to which assets to assess first.

For ECUA, the goal of the PRP is to develop a risk model (likelihood and consequence of failure) to be used as a guide to determine the assets to inspect first, as well as to select the appropriate assessment technique based on risk. ECUA can use this model to put the right amount of money towards the most appropriate asset at the right time. This provides a utility like ECUA with an effective and defensible approach to managing their assets, and it actually defers long-term funding needs by maximizing the life of an asset.

Given Pure’s unique focus on pipeline asset management, its engineers and scientists have developed a risk model that allows for the input of base asset data, operational history and information, as well as condition assessment techniques and technologies. This model, unique to the industry, provides an output that clients can use in their capital and operational budgeting processes.

 

SmartBall inside a pipe.

Latest services include transit pressure monitoring and acoustic leak detection

To date, Pure has been working with Arcadis on a risk prioritization for the ECUA force main network, in which data is collected with transient pressure monitors, as well as from SmartBall acoustic inspections in order to assist in creating a Master Plan for the ECUA wastewater division. ECUA is currently five (5) years into the 15-year calendar agreed to with DEP.

In addition to the transient monitoring, during 2016 Pure inspected approximately 13.6 linear miles of force mains through seven (7) SmartBall deployments, giving ECUA more evaluative information on their aging infrastructure.

As this project is still ongoing, both ECUA and Arcadis have expressed an interest into additional wastewater projects, with the hope to ultimately address the water transmission and distribution system.

And to think, the plan all began with a simple phone call.

Mackay City Coast

Justification of an ongoing condition assessment program can, at times, be difficult for water utilities. However, successful inspections that deliver actionable outcomes on how to manage aging assets make this justification much easier.

Certainly that was the case for Mackay Regional Council (MRC) when it engaged the services of Pure Technologies to conduct a variety of condition assessment inspections on their critical mains in order to improve their understanding of these aging assets.

For MRC, the goal of the 3-year Condition Assessment Program is to undertake and then analyze the results from the preliminary inspections, followed by a commitment to explore secondary condition assessments, where warranted.

Mackay satellital image with mains map

About Mackay Regional Council

Mackay Regional Council is a small but progressive water utility that serves a population of nearly 124,000 on the eastern coast of North Queensland, Australia. The utility has a total of 2,150 km of water and wastewater mains in its network. MRC is proactive in its approach to water management, and takes pride in the development of its industry-leading condition assessment program, initiating the first leg of the program with Pure mid-2016.

SmartBall with case and insertion tools

First SmartBall inspection on two sewer rising mains

In June 2016, MRC retained the services of Pure to perform a SmartBall® inspection of the Coles Road Sewer Rising Main (SRM), also known as force main. The Coles Road SRM is an asbestos cement (AC) and ductile iron (DI) pipeline that transfers wastewater from the Coles Road Sewer Pump Station (SPS) to the Mount Basset Sewer Rising Main. The purpose of the SmartBall inspection was to identify leaks and pockets of trapped gas along the pipeline.

Pure recommended the SmartBall tool for its relative ease of insertion and extraction of in-service pipelines, and its ability to inspect long distances in a single deployment. The tool’s acoustic sensor can detect ‘pinhole’ sized leaks and gas pockets within a location accuracy of plus or minus 1.8 m (6 feet), a critical factor in urban environments where excavations can be costly and disruptive to the public.

After the review of data integrity and backup from the Coles Road site, the crew moved to the Beaconsfield SRM, where a further SmartBall inspection was completed. The inspection went as smoothly as the first, and all data was confirmed for quality.

This technology has assisted us in assessing the operational and potential structural integrity of some hard to access buried mains of high failure consequence without significant service outage or worker safety in a way not previously utilised.  It certainly lifts us out of the purely reactive mode toward the proactive assessment of buried infrastructure in terms of service delivery risk management and maintenance/renewal planning…”

MRC Project Leader

Second SmartBall inspection on a sewer rising main and raw water main

During the next phase of the project, Pure conducted a preliminary condition assessment of two more critical mains, the Mount Basset SRM and the following day, on Marwood Bore Raw Water Main. Pure always utilizes separate inspection sets for potable and wastewater to eliminate any risk of contamination.

SmartBall extraction

Second SmartBall inspection on a sewer rising main and raw water main

Results of the preliminary condition assessment were utilised to identify whether a secondary condition assessment is required.

Historically, it has proven challenging to assess the condition of pressurized mains that carry sewage, especially those made with ferrous material. Sewer rising mains have special operational challenges that don’t apply to gravity sewer systems, and due to the presence of solids in the flow, sewer rising mains represent a far more abrasive environment than potable water systems.

Gas pockets are of significant concern in rising sewer mains, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall.  This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Utilizing Sahara™ platform with CCTV

For the third phase of the Program, MRC engaged Pure for a condition assessment of the Gordon Street Water Main. In order to inspect this critical main, Pure conducted three (3) separate insertions using the Sahara inspection platform. The Sahara system uses an innovative tethered platform to conduct non-destructive inline leak and gas pocket detection, and an internal visual inspection via closed circuit television (CCTV), without disruption to service. This allows for real-time reporting of acoustic anomalies detected in the pressurized lines.

The inspection occurred over a period of two nights to minimize traffic disruption. The targeted portion of the main consists of cast iron (CI) and asbestos cement (AC) pipe in three diameters.

“We are still to progress fully into this mode of operation, however this technology appears to provide us a firm foundation to step off from…”

Don Pidsley

Working during the night

Collected data gives MRC actionable information on necessity for secondary assessments

All in all, the data collected to date has given MRC a better understanding of their critical assets. By undertaking a preliminary condition assessment approach, MRC now has actionable information regarding the necessity of future secondary assessments.

Based on preliminary results, minimal disruption and collaborative cooperation between the mobilization teams, MRC has inquired about additional inspections under their in their industry-leading condition assessment program.

Workers meeting in a parking
City of Vancouver from the air

With its Pacific Ocean entranceway and towering backdrop of snow-dusted mountains, it’s no wonder the City of Vancouver ranks among the most laid-back, beautiful cities in Canada, and indeed, the world. Water is in its blood.

This spring the coastal seaport city retained the services of Pure Technologies (Pure) to perform a condition assessment and risk analysis of the Powell-Clark Feeder Main, part of the city’s water system that daily delivers 360-million liters of high-quality water throughout the city. During the course of the assessment, the inspection team had to deal with unexpected challenges, but in true West Coast spirit, collaboration between the inspection teams led to success.

Over five days in March 2016, Pure performed an electromagnetic inspection of the subject pipeline utilizing its free-swimming PipeDiver® platform, and an acoustic inspection using its free-flowing SmartBall® inspection tool. Pure also monitored this feeder main using a Transient Pressure Monitor for three months prior to the previous two inspections.

PipeDiver device

PipeDiver inspection identifies electromagnetic anomalies

The Powell Street Feeder Main is comprised of prestressed concrete cylinder pipe (PCCP), ranging from 750 to 900-mm in diameter. The Clark Drive Feeder Main consists of 750-mm of bar wrapped pipe (BWP).

The PipeDiver electromagnetic inspection covered a cumulative distance of 4.57 kilometers and spanned 676 pipes. Unlike more restrictive assessment tools, PipeDiver is a flexible, free-swimming tool that flows with the product and is able to easily navigate through most butterfly valves, apertures and bends in the pipeline, delivering electromagnetic (EM) data for a variety of pipe type and materials.

EM technology provides prestressing wire-break estimates on each individual section of PCCP, which is the best indicator that this type of pipe will fail. This allows for one deteriorated pipe to be identified within an entire pipeline that is in good condition overall, and also provides the baseline condition on all pipes in the inspected distance.

Analysis of the data obtained during the inspection determined that one (1) pipe (less than one percent of the pipeline) in the 750 mm Powell-Clark Feeder Main displayed electromagnetic anomalies consistent with 30 broken prestressing wire wraps. This is well below the average distress rate observed by Pure Technologies in PCCP pipelines, which is 3.8 percent of pipes in structural distress.
SmartBall with case and insertion tools

SmartBall inspection tool used to locate leaks and gas pockets

In addition to the EM inspection, Pure also performed a SmartBall inspection to identify and locate leaks and pockets of trapped gas along the pipeline.

Unlike traditional external listening tools with limited success on large diameter pipes, free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls, it can inspect every inch of a water main to detect leaks and gas pockets.

The SmartBall tool was inserted into the pipeline through a flange access and acoustic and sensor data was collected and recorded as the tool traversed the pipeline. At a distance of 5.8 kilometers, (only 470 meters from the end of the inspection run), the tool stopped tracking.

Crews from the City and Pure put their heads together to solve the problem.

ROV camera shows a tool cart inside the pipe

Collective thinking clears the debris and all is well

By analyzing data from the earlier PipeDiver inspection, Pure determined that unknown debris likely lodged the SmartBall tool.

The City excavated and modified a tap to allow Pure to access the pipeline with a submersible ROV (equipped with a camera) to retrieve the SmartBall tool and examine the debris, which turned out to be an old forgotten tool cart. The cart and SmartBall tool were extracted, the data was evaluated and considered valid, and all was good.

From the SmartBall data, Pure Technologies detected three (3) anomalies characteristic of leaks and zero (0) acoustic anomalies characteristic of pockets of trapped gas.

While no gas pockets were identified during this inspection, two (2) instances of entrained air were identified as migratory acoustic anomalies, and flagged for future inspection, as they may develop new pockets of trapped gas.

Validated results help the City manage its infrastructure

In spite of the cart debris blocking the SmartBall tool during the last few meters of its long inspection journey, the data collected during the pipeline assessment was analyzed as valid.

When combined with the results from the PipeDiver EM inspection, the condition data will be used as part of the City of Vancouver’s asset management initiative and allow for proactive measures in the assessment and management of their infrastructure.

West Palm Beach Aerial View

The City of West Palm Beach (WPB) makes a concerted effort to engage its citizens.

As one of the three largest cities in South Florida, WPB is a vibrant, growing waterfront community with a population of more than 100,000. Since 1974, WPB has experienced exponential growth in its population and correspondingly, in its wastewater management needs. During this time, WPB has continuously upgraded its pumping and treatment processes based on advances in regulations and technology.

In the evolution of its force main strategy, WPB has undertaken a variety of initiatives to manage its network to reflect the needs of its community. This ties into an overall strategy by dealing with rehabilitation needs proactively to prevent costly system failures while planning the rehabilitation and assessment of an entire system over the long term.

West Palm Beach bucks the trend to replace based on age of system

Historically, management of a force main network has been based on the general age of the system without specific information of the system in relation to its normal and extreme weather operation.

Bucking this trend, WPB takes an enlightened view to the management of its wastewater network, with age of the system not an automatic reason to replace or rehabilitate. While complete replacement would be ideal, the cost associated with full scale replacement is unfeasible. Ratepayers demand fiscal responsibility and are reluctant to sign over blank cheques to their utilities.

As a testament to its proactive stance, WPB has completed the first phase of a condition assessment, design and rehabilitation program of its force main network, which includes a nearly six-mile section of pipeline that conveys wastewater from Lift Station 22 to the East Central Regional Water Reclamation Facility (ECRWRF). Comprised of 42-inch and 48-inch lined cylinder pipe (LCP) and 48-inch embedded cylinder pipe (ECP), this force main, constructed in 1974, is considered the most critical piece of underground infrastructure for the City’s wastewater system.

Staff working at insertion site

In 2007, WPB conducted acoustic monitoring of the ECRWRF Force Main to determine what areas were deteriorating, but the results proved inconclusive.

In 2015, with the evolution of condition assessment techniques, WPB retained Pure Technologies to conduct a follow-up inspection using pressure monitoring and non-destructive inline assessment technologies.

For WPB, the process included examination of the ECRWRF pipeline from a wide variety of parameters. For example, manufacturing standards from the original force main design were structurally analyzed in contrast to current design standards.

The program examined current operational and maintenance practices, monitored air release valves and looked at pressure profiles based on the multiple pumping station connections to the force main. By deploying acoustic and electromagnetic technologies from Pure Technologies, WPB identified high priority areas based on gas pockets and structural stress along the force main route. WPB combined this information with rehabilitation and replacement strategies to define the second phase of the management process.

SmartBall® inside a pipe

First inspection: SmartBall® acoustic leak and gas detection

In February, Pure used its SmartBall inspection platform to conduct acoustic leak and gas pocket detection on the line. Unlike traditional external listening tools with limited success on large-diameter pipes, free-flowing SmartBall technology provides a high degree of accuracy, since as the ball rolls, it can inspect every inch of the main to detect leaks and gas pockets.

The SmartBall tool was inserted into the pipeline through a hot tap and acoustic data was collected and recorded as the tool traversed the pipeline, where it was later retrieved at a bypass grit chamber.

PipeDiver® electromagnetic inspection

Next: PipeDiver® electromagnetic inspection

Subsequently, Pure deployed its free-swimming PipeDiver platform to perform an electromagnetic (EM) inspection to locate broken prestressing wire wraps in the LCP/ECP pipe. Unlike more restrictive assessment tools, PipeDiver is a flexible, free-swimming tool that flows with the product and is able to easily navigate through most butterfly valves, apertures and bends in the pipeline, delivering electromagnetic (EM) data for a variety of pipe type and materials.

EM technology provides prestressing wire-break estimates on each individual section of PCCP, which is the best indicator that this type of pipe will fail. This allows for one deteriorated pipe to be identified within an entire pipeline that is in good condition overall, and also provides the baseline condition on all pipes in the inspected distance.

Results guide the success of the program

During the SmartBall inspection, zero (0) leaks were detected, while 23 recordings were indicative of entrained gas and gas slugs.  Of the 1,682 pipes inspected by the PipeDiver tool, approximately 10 percent of pipes displayed electromagnetic anomalies consistent with broken prestressing wire wraps.

Overall, the condition assessment found the majority of the pipe to be in good condition. Pressure monitoring identified intermittent pressure surges within the design standards of the force main. However, this effort elevated the City’s awareness of the relationships between pressure management and the structural integrity of the pipeline.

Based on the completed assessment, the City implemented a two-year project delivery timeline for extending the service life of the force main for another 40 to 50 years.  The schedule included a comprehensive community outreach program that has residents onboard with the phased-in design and construction approach.

SmartBall extraction and retrieval

*Published in World Pipelines Magazine

The oil and gas pipeline industry has been under close scrutiny for a long time. It leads the way as one of the most regulated industries in the world, and for good reason.  With so many safety-related, social and environmental factors at stake, comprehensive regulation ensures rigorous standards for the design, construction, operation and maintenance of O&G pipeline systems.

Global economics and political activism also play a role in shaping today’s conversation about pipelines. In North America, public debates about the Keystone XL Pipeline have dominated much of the recent news, compelling operators to vigorously participate in the discussion and advocate their integrity management programs. Although Keystone has been put on hold, social capital can assist in getting projects of this magnitude on the radar again.

Through it all, much of the dialogue has focused on the industry’s commitment to protecting communities and the environment from risk by means of rigorous pipeline integrity management programs. As a result, the requirement for increased pipeline safety drives innovative research into improving the sensitivity and reliability of inline inspection (ILI) tools.

Most operators already deploy trusted inline technologies that detect structural deterioration and help maintain pipeline integrity. However, with pressure mounting from stricter regulation, increased operational costs, commodity price-driven budgetary pressure, and often limited available resources, operators face an increasing number of challenges, including vigilance from highly engaged consumer groups.

Although the pressure to perform is greater than ever, operators are responding appropriately with greater confidence in modern technologies to assist in the operation and monitoring of their pipeline systems.

Better ILI tools instill better confidence in containment

To have confidence in the pipeline, operators must have confidence in the capabilities of ILI tools to detect small anomalies that could lead to potential failures.  They must also trust the reliability and interpretation of the data, knowing with as much certainly as possible that the depth, size and location of the pipe wall anomaly is correct.

Overall the news is good. Between 2002 and 2013, Canadian Energy Pipeline Association (CEPA) member companies were able to transport oil and natural gas with a 99.999 percent safety record. While that statistic sounds impressive, headline-grabbing pipeline incidents do occur, (in 2014 there were 122 natural gas and liquid releases) and when that happens, the repercussions can undo years of containment management trust and goodwill.

While the oil and gas industry boasts a remarkable safety record, a reliance on conventional tools limit the near perfect record.  As much as the technologies have been refined, regulators have noted that inline inspections don’t pick up all defects, and expedient follow-through often depends on the people analyzing the data and planning repairs, a process that can take months.

“Despite their sophistication, the detection capabilities of inline inspection tools have limitations,” the US National Transportation Safety Board noted in its report on the 3.3-million-liter 2010 spill in Michigan.

Limitations of conventional ILI inline inspection technologies

The oil and gas pipeline industry has access to an extensive toolbox of technologies for robust integrity programs. Some tools address cracks or corrosion issues, while other tools focus on stress, pressure and product containment. Cost, resolution, reliability, data analysis speed – each technology has its own strengths and limitations, with no silver bullet as the single solution for collecting pipeline condition information.

For example, there is a strongly-held belief in hydrostatic testing as a reliable method to test a pipeline’s integrity. One of the earliest inspection techniques, hydrostatic testing determines if a pipeline can hold its operating pressure. A form of destructive testing, hydrostatic inspection involves purging the product, flooding the line with water, pressurizing it to a predetermined level and maintaining the pressure for a period. Based on the results, detected anomalies in pressure, volume and density can be a precursor to leaks.

Critics however, argue and have quite effectively demonstrated that the hydrostatic tests lack the ability to monitor ongoing corrosion or cracking and that the high pressure environment can exacerbate previously small defects, increasing risk of future rupture.

Smart pigs for detecting large cracks and corrosion

Unlike hydrostatic testing, which is often conducted on pipelines for acceptance testing or for pipelines recently rehabilitated, pigging is the more commonly accepted method of testing pipeline integrity.

While newer “smart” pigs have an excellent reputation for accuracy, their efficacy is often limited to detecting corrosion and cracking that exceeds the threshold for detection of the technology.  Small corrosion pits and cracks, especially cracks grouped in a colony, can pose a challenge to most conventional ILI pigging devices.

The various ILI technologies are sensitive to axial or circumferential defects, and each has limitation for minimum aspect ratios or cross sectional wall loss area before the ILI tool can report the anomaly.  It is also possible to have cracks and wall loss pits that are in close proximity to girth welds, long seams, and other features in the pipe, which can mask the defect, preventing the ILI tool from properly identifying and sizing.  As a result, it is possible to have leaking cracks and corrosion pits that are too small to be sized and reported from conventional ILI.

Not all lines are piggable

Some pipes are more suitable for pigging than others. While most oil and gas transmission lines were built in long straight sections suitable for pig runs, sections with small diameter pipe and small bend radius pipe configurations can limit many ILI tools.  Lines with expansion loops and miter bends, and in the case of natural gas lines, those with reduced port valves, are factors that can prohibit or restrict the traversing of online tools.

Mass balance measurement and other leak detection tools

To make up for the limitations of conventional ILI technologies, operators often deploy measurement methods and leak detection technologies to complement their integrity programs.

Mass balance is a means of detecting leaks by measuring the mass of product entering the pipeline compared to the mass exiting the pipeline. The limitation for detecting small leaks is the sensitivity of the mass meters being used (2-4% accuracy for conventional orifice meters and 0.25% for turbine meters), and the fact that the product temperature and pressure changes as it moves through the pipeline.

While mass balance is a means to determine leaks, it is also recognized that making actual measurement of mass from volume (through a meter) at different temperature and pressure going in versus coming out of the pipeline, in real time, is difficult, and not very precise or sensitive to small leaks.

As a result, a leak has to release more product than the total tolerance of the mass balance system before a positive leak/release event is alarmed.

Acoustic leak detection

Minute cracks are often preliminary indicators of potential small leaks that produce acoustic emissions at levels often unrecognizable over background noise.

Acoustic leak detection can be conducted with geophones/hydrophones, comparators and acoustic fiber optic techniques, and each of these acoustic tools is subject to different background noise limitations to determine leak detection thresholds.  Not only can these tools have limitations to prevent small leak detection, the expense from installing permanent acoustic systems may reduce the practicality of these technologies.

Emerging technologies on the horizon

To complement hydrostatic testing, conventional pigging tools, and leak detection technologies, the oil and gas industry is evaluating a growing number of emerging external confirmation of containment technologies. These include vapour-sensor systems, hydrocarbon-sensing cables that change in the presence of hydrocarbons, internal pressure wave based tools and fibre-optic based systems that detect temperature changes and acoustic signals associated with leaks.

While these technologies offer hope for more precise surveys, they have yet to be universally accepted or proven. Many are still under development and often require economically impractical installation requirements.

However, there is an innovative, multi-sensor ILI platform that has been used in integrity management programs since 2006, gaining the attention of major pipeline players who have tested the platform, which has now been used on over 25,000 kilometers of pipeline in total.

Introducing SmartBall® technology for Oil & Gas pipelines

To provide a realistic snapshot of a pipe’s condition, many proactive operators are deploying SmartBall technology,  a free-swimming multi-sensor tool for long inspections of piggable and difficult to pig liquid and gas pipelines 4 inches and larger. This advantage makes the ball-shaped tool an excellent choice for traversing not just standard diameter pipes, but for smaller diameter liquid lines and for gas pipelines with loops and frequent sharp bends and heavy wall fittings.

During an inspection, the SmartBall sensors collect acoustic, pressure, temperature, magnetic and inertial data from inside the pipeline.

Primary applications for the SmartBall tool

SmartBall surveys can be conducted independently, at regular intervals, as part of a routine pipeline integrity management program, or as a value-add to inspection programs along with hydro-testing, ILI, or direct assessment.

The tool is launched and retrieved at existing pig traps and is tracked using proprietary acoustic receivers and/or Armadillo pig tracking boxes (AGMs). The location data from acoustic receivers and tracking boxes is used during data analysis to locate any anomalies.

SmartBall technology has three primary applications, and the multi-sensor tool can provide a variety of pipeline data.

1. Confirmation of Containment

Regular confirmation of containment surveys are an important part of integrity management as leaks are often a preliminary indicator of pipe failure.

Unlike conventional leak detection systems, confirmation of containment with SmartBall supplements these systems. The SmartBall tool directly passes leaks, and is therefore capable of detecting losses as small as 150 mL/min, which can be several orders of magnitude more sensitive than conventional methods.

SmartBall surveys can also complement regular ILI surveys by addressing potential pinhole anomalies that have aspect ratios below the reporting threshold of ILI systems.

2. Pressure and Temperature profiles

As the SmartBall is rolling and not sealing against the pipe ID, as conventional pigs do, the tool can also record precise pressure and temperature profiles. The SmartBall platform can be deployed in gas pipelines, where pressure and temperature profiles can be integrated into flow models to assess the points where water vapor may condense out of the gas.

The tool can also be used to assess the point where high temperatures from pump or compressor output may have affected the pipe coating, as well as in settings to validate and improve SCADA and mass balance systems.

3. Pipe Wall Assessment and Inertial Mapping

During inspection, the SmartBall Pipe Wall Assessment (PWA) tool collects magnetic data that can provide a screening of the pipe wall for stress resulting from features like large cracks, large wall loss, dents and points of excessive loading.  The test can also complement hydrostatic testing, as it can survey the pipeline before and after hydro-tests to identify stress that is indicative of pressure reversals.

In addition, the SmartBall PWA tool can produce a girth weld and joint tally for the pipeline, as well as can confirm locations of bends and general geometry of the pipeline.

Helping operators make better decisions

Admittedly, SmartBall is not designed to compete with high resolution technologies like Magnetic Flux Leakage (MFL), which can provide detailed wall loss data.

What SmartBall can do is complement other integrity tools by providing additional data sets to ensure pipeline integrity. In a single deployment, it can detect anomalies associated with pinhole leaks and stress that doesn’t necessarily involve wall loss; e.g. geotechnical strains.  It can also detect change in pressure and temperatures.

Ultimately, the SmartBall tool can help capture enough data to confirm the integrity of the pipe and give operators enough microscopic knowledge to make better, informed, risk-based decisions on the health of their pipelines.

At Singapore International Water Week 2016, one of Pure`s licencees presented a poster on two acoustic-based technologies (tethered Sahara® and free-swimming SmartBall®) used to locate 674 leaks on large-diameter trunk mains operated by this Malaysia water operator.

Conducted over four months, the in-line inspection and resulting repairs has saved total of 46.7 million liters of water daily. The pipe diameters ranged from 300mm to 2,200mm.

 

SmartBall in-line leak inspection platform

The SmartBall tool was chosen as an inspection platform for its sensitivity to small leaks, minimal pipeline modifications required for insertion and extraction and ability to inspect long distances in one deployment. The free-swimming, acoustic-based SmartBall assembly is inserted into the flow of a pipeline, traverses the pipeline, and is captured and extracted at a point downstream.

Sahara in-line leak detection platform

The tethered Sahara tool includes an acoustic sensor to perform leak and gas pocket detection, a high-resolution video camera to assess internal pipe conditions, and an electromagnetic sensor to identify stress in the pipe wall. Because the parachute-like tool is drawn by product flow and is tethered to a data acquisition unit on the surface, it gives the operator close control to confirm suspected leaks, gas pockets and other pipeline anomalies.

 

Georgia Road Sign

Unlike many large, well-funded municipalities, smaller mid-sized communities often lack the financial resources to conduct proactive inspections on their buried infrastructure. Generally it’s a common situation prevalent across much of the United States.

For this reason, when several medium-sized Georgia communities were provided state funding for an inspection and condition assessment on critical sections of their water pipelines, they jumped at the opportunity to have actionable information about their actual pipeline condition.

A baseline condition inspection helps operators make defensible decisions

The Georgia Environmental Finance Authority (GEFA) facilitates programs that conserve and protect Georgia’s energy, land and water resources. In this instance, GEFA provided technical assistance funding for seven mid-sized communities to perform condition assessment on large diameter lines, which for these communities, ranged from 8-inch polyvinyl chloride (PVC) to 24-inch ductile iron pipes.

Pure Technologies was retained to perform condition assessment work for seven (7) Georgia communities, which included Marietta Board of Lights and Water, Paulding County, Haralson County, City of Dublin, City of Valdosta, Spalding County, and Coweta County—whose populations ranged from 10,000 to 100,000.

For the most part, Pure performed a SmartBall® leak and gas pocket inspection and Transient Pressure Monitoring with Fatigue Analysis on the potable water pipelines for the subject communities.

In addition, Pure was also retained to deploy a SmartBall® Pipe Wall Assessment (PWA) on the ductile iron mains for the City of Valdosta Utilities Department and the Marietta Board of Lights and Water.

PWA data

SmartBall PWA technology is used to evaluate metallic pipelines by detecting and measuring the changing levels of the magnetic field, which is related to the stress in the pipe wall. As a screening tool, PWA technology provides an indication of pipe sections exhibiting higher levels of stress, which can be used as a first stage of pipeline condition assessment to help make informed decisions on higher resolution investigations, inspection, data collection and subsequent management or rehabilitation.

SmartBall tool chosen for its ease of use and sensitivity to small leaks

The SmartBall tool was chosen as an inspection platform for its sensitivity to small leaks, minimal pipeline modifications required for insertion and extraction and ability to inspect long distances in one deployment. The free-swimming, acoustic-based SmartBall tool is inserted into the flow of a pipeline, traverses the pipeline, and is captured and extracted at a point downstream.

SmartBall inside a pipe with a net

During inspection, the SmartBall tool’s location is tracked at known points along the alignment to correlate the inspection data with specific locations. As the SmartBall tool approaches a leak, the acoustic signal will increase and crescendo at the point when the tool passes the leak.

Deploying the SmartBall tool allowed each inspection to take place while the mains remained in service, a benefit much appreciated by the communities.

“This was an excellent opportunity to offer mid-sized communities in Georgia with a non-destructive internal inspection of critical pipes within areas where traditional methods may not able to collect this important information. Pure provided very professional service to work with the Utilities and help develop a specific plan to acquire this valuable data.”

Larry Lewison, NRW Analyst, Consultant

Inspection not without its challenges

In general, for most of these smaller communities, condition assessment was a novel concept, which meant lots of communication between Pure and the utilities. Mid-sized utilities, understandably, are often hamstrung by a lack of as-built drawings, geographic information systems (GIS) or other connection and appurtenances information on their pipeline network.

In the end, based on Pure’s many years of inline inspection experience and expertise, obstacles were overcome and the overall inspection program was a positive learning experience for all.

Results from cumulative 11.7 miles of inspection

Immediately after each inspection, the data was downloaded from the SmartBall tool, verified for quality and sent to Pure Technologies for review by the analysis team.

Based on the acoustic results of all the SmartBall inspections, three (3) true leaks and zero (0) acoustic anomalies characteristic of gas pockets were found on a cumulative distance of 11.73 miles of pipe inspected. For the city of Valdosta, which included a PWA inspection, Pure identified 30 specific pipes as having anomalies indicative of stress. For the Marietta Board of Lights and Water, Pure detected 61 stress anomalies along the pipe wall. This indicates a 22 percent anomaly rate, which is average compared to historical data on similar pipelines.

In addition, Pure also performed fatigue analysis for all PVC pipes, and no immediate concerns were noted.

The results indicate that the assessed mains are generally in serviceable condition, and gave the Georgia communities confidence in the overall health their systems, with no need for immediate rehabilitation, except for the three leaks that warranted attention. This process allows the communities to develop a sustainable long-term strategy for managing their critical buried assets.

Insertion and extraction sites
City of Ottawa Skyline

When your inspection task is to survey a critical pipeline for leaks, nothing is more satisfying than trusting your technology to predict the leak location and then standing by as the client excavates the area to find a flow of water within one meter of exactly where you said it would be.

The above-described “leak-where-predicted” recently happened with the City of Ottawa, when Pure Technologies (Pure) deployed its SmartBall® inspection platform to locate leaks along a critical transmission main, as part of a long-term condition assessment program for the municipality. Over the past five years, Pure has used its suite of platform tools, including Sahara®PipeDiver®, and PureRobotics®, as well as the free-swimming SmartBall device, for deployment on the City’s ongoing Drinking Water Transmission Main Condition Assessment Program.

Transmission main comprised of 1220mm (48-inch) lined cylinder pipe

The City’s potable water distribution system consists of 3,728 km of both local water mains and large-diameter transmission mains that move large volumes of water throughout the capital. The City has approximately 230 kms of transmission mains ranging in diameter from 600mm to 1980mm, (24-inch to 78-inch) subdivided into 96 segments for the purpose of a risk-based prioritization.

For the subject project, the City of Ottawa retained the services of Pure to perform a SmartBall tool inspection to identify and locate leaks and pockets of trapped gas along the Baseline Road Water Transmission Main, a high priority pipeline. The 1220mm (48-inch) diameter pipeline is comprised of Lined Cylinder Pipe (LCP) mostly constructed in the 1970s.

Pipe leaking

SmartBall tool chosen for its ease of use and sensitivity to small leaks

The SmartBall tool was chosen as an inspection platform for its sensitivity to small leaks, minimal pipeline modifications required for insertion and extraction and ability to inspect long distances in one deployment. The free-swimming, acoustic-based SmartBall assembly is inserted into the flow of a pipeline, traverses the pipeline, and is captured and extracted at a point downstream.

SmartBall extraction process

During inspection, the SmartBall tool’s location is tracked at known points along the alignment to correlate the inspection data with specific locations. As the SmartBall tool approaches a leak, the acoustic signal will increase and crescendo at the point when the tool passes the leak.

For the City of Ottawa project, five (5) surface-mounted acoustic sensors were placed along pipeline to track the SmartBall tool during the inspection. SmartBall receivers were connected to the sensors on the pipeline at the locations indicated to track the tool during inspection.

The SmartBall device was inserted into the pipeline through a 100mm drain near a hospital. Acoustic and sensor data was collected and recorded as the SmartBall tool traversed the pipeline for more than three kilometers. The SmartBall was then extracted from a reservoir using a Remotely Operated Underwater Vehicle and data was evaluated to identify acoustic anomalies associated with leaks and pockets of trapped gas.

Verification with ground microphones turned up unexpected results

From the survey results, Pure detected one (1) acoustic anomaly characteristic of a leak and zero (0) anomalies consistent with pockets of trapped gas.

Although Pure was confident in the SmartBall leak detection data, sometimes it’s worth a try to verify an anomaly with a complimentary technology. In this instance, ground microphones, regarded as a conventional a leak detection tool, were deployed to try and detect leak sounds. Although the suspect area was marked, neither Pure nor the client could pick up leak-related sounds from the ground microphone.

Even though the leak was not picked up by the ground microphone, Pure was confident that the acoustic signature from the SmartBall was caused by a leak, based on more than 15 years of experience identifying leaks. That confidence and experience proved right, and when the suspected area was excavated, the leak was located within a meter of where data analyst calculated the leak to be.

The results gave the City of Ottawa actionable data regarding the condition of their pipeline, and the City was able to fix the leak reducing non-revenue water loss and any potentially costly damage caused by the leak. It’s a great example of a proactive utility taking efforts to improve the reliability of its services.

SmartBall extracted by Pure technicians

*Published in World Pipelines Magazine

The oil and gas pipeline industry has been under close scrutiny for a long time. It leads the way as one of the most regulated industries in the world, and for good reason.  With so many safety-related, social and environmental factors at stake, comprehensive regulation ensures rigorous standards for the design, construction, operation and maintenance of O&G pipeline systems.

Global economics and political activism also play a role in shaping today’s conversation about pipelines. In North America, public debates about the Keystone XL Pipeline have dominated much of the recent news, compelling operators to vigorously participate in the discussion and advocate their integrity management programs. Although Keystone has been put on hold, social capital can assist in getting projects of this magnitude on the radar again.

Through it all, much of the dialogue has focused on the industry’s commitment to protecting communities and the environment from risk by means of rigorous pipeline integrity management programs. As a result, the requirement for increased pipeline safety drives innovative research into improving the sensitivity and reliability of inline inspection (ILI) tools.

Most operators already deploy trusted inline technologies that detect structural deterioration and help maintain pipeline integrity. However, with pressure mounting from stricter regulation, increased operational costs, commodity price-driven budgetary pressure, and often limited available resources, operators face an increasing number of challenges, including vigilance from highly engaged consumer groups.

Although the pressure to perform is greater than ever, operators are responding appropriately with greater confidence in modern technologies to assist in the operation and monitoring of their pipeline systems.

Better ILI tools instill better confidence in containment

To have confidence in the pipeline, operators must have confidence in the capabilities of ILI tools to detect small anomalies that could lead to potential failures.  They must also trust the reliability and interpretation of the data, knowing with as much certainly as possible that the depth, size and location of the pipe wall anomaly is correct.

Overall the news is good. Between 2002 and 2013, Canadian Energy Pipeline Association (CEPA) member companies were able to transport oil and natural gas with a 99.999 percent safety record. While that statistic sounds impressive, headline-grabbing pipeline incidents do occur, (in 2014 there were 122 natural gas and liquid releases) and when that happens, the repercussions can undo years of containment management trust and goodwill.

While the oil and gas industry boasts a remarkable safety record, a reliance on conventional tools limit the near perfect record.  As much as the technologies have been refined, regulators have noted that inline inspections don’t pick up all defects, and expedient follow-through often depends on the people analyzing the data and planning repairs, a process that can take months.

“Despite their sophistication, the detection capabilities of inline inspection tools have limitations,” the US National Transportation Safety Board noted in its report on the 3.3-million-liter 2010 spill in Michigan.

Limitations of conventional ILI inline inspection technologies

The oil and gas pipeline industry has access to an extensive toolbox of technologies for robust integrity programs. Some tools address cracks or corrosion issues, while other tools focus on stress, pressure and product containment. Cost, resolution, reliability, data analysis speed – each technology has its own strengths and limitations, with no silver bullet as the single solution for collecting pipeline condition information.

For example, there is a strongly-held belief in hydrostatic testing as a reliable method to test a pipeline’s integrity. One of the earliest inspection techniques, hydrostatic testing determines if a pipeline can hold its operating pressure. A form of destructive testing, hydrostatic inspection involves purging the product, flooding the line with water, pressurizing it to a predetermined level and maintaining the pressure for a period. Based on the results, detected anomalies in pressure, volume and density can be a precursor to leaks.

Critics however, argue and have quite effectively demonstrated that the hydrostatic tests lack the ability to monitor ongoing corrosion or cracking and that the high pressure environment can exacerbate previously small defects, increasing risk of future rupture.

Smart pigs for detecting large cracks and corrosion

Unlike hydrostatic testing, which is often conducted on pipelines for acceptance testing or for pipelines recently rehabilitated, pigging is the more commonly accepted method of testing pipeline integrity.

While newer “smart” pigs have an excellent reputation for accuracy, their efficacy is often limited to detecting corrosion and cracking that exceeds the threshold for detection of the technology.  Small corrosion pits and cracks, especially cracks grouped in a colony, can pose a challenge to most conventional ILI pigging devices.

The various ILI technologies are sensitive to axial or circumferential defects, and each has limitation for minimum aspect ratios or cross sectional wall loss area before the ILI tool can report the anomaly.  It is also possible to have cracks and wall loss pits that are in close proximity to girth welds, long seams, and other features in the pipe, which can mask the defect, preventing the ILI tool from properly identifying and sizing.  As a result, it is possible to have leaking cracks and corrosion pits that are too small to be sized and reported from conventional ILI.

Not all lines are piggable

Some pipes are more suitable for pigging than others. While most oil and gas transmission lines were built in long straight sections suitable for pig runs, sections with small diameter pipe and small bend radius pipe configurations can limit many ILI tools.  Lines with expansion loops and miter bends, and in the case of natural gas lines, those with reduced port valves, are factors that can prohibit or restrict the traversing of inline tools.

Mass balance measurement and other leak detection tools

To make up for the limitations of conventional ILI technologies, operators often deploy measurement methods and leak detection technologies to complement their integrity programs.

Mass balance is a means of detecting leaks by measuring the mass of product entering the pipeline compared to the mass exiting the pipeline. The limitation for detecting small leaks is the sensitivity of the mass meters being used (2-4% accuracy for conventional orifice meters and 0.25% for turbine meters), and the fact that the product temperature and pressure changes as it moves through the pipeline.

While mass balance is a means to determine leaks, it is also recognized that making actual measurement of mass from volume (through a meter) at different temperature and pressure going in versus coming out of the pipeline, in real time, is difficult, and not very precise or sensitive to small leaks.

As a result, a leak has to release more product than the total tolerance of the mass balance system before a positive leak/release event is alarmed.

Acoustic leak detection

Minute cracks are often preliminary indicators of potential small leaks that produce acoustic emissions at levels often unrecognizable over background noise.

Acoustic leak detection can be conducted with geophones/hydrophones, comparators and acoustic fiber optic techniques, and each of these acoustic tools is subject to different background noise limitations to determine leak detection thresholds.  Not only can these tools have limitations to prevent small leak detection, the expense from installing permanent acoustic systems may reduce the practicality of these technologies.

Emerging technologies on the horizon

To complement hydrostatic testing, conventional pigging tools, and leak detection technologies, the oil and gas industry is evaluating a growing number of emerging external confirmation of containment technologies. These include vapour-sensor systems, hydrocarbon-sensing cables that change in the presence of hydrocarbons, internal pressure wave based tools and fibre-optic based systems that detect temperature changes and acoustic signals associated with leaks.

While these technologies offer hope for more precise surveys, they have yet to be universally accepted or proven. Many are still under development and often require economically impractical installation requirements.

However, there is an innovative, multi-sensor ILI platform that has been used in integrity management programs since 2006, gaining the attention of major pipeline players who have tested the platform, which has now been used on over 25,000 kilometers of pipeline in total.

Introducing SmartBall® technology for Oil & Gas pipelines

To provide a realistic snapshot of a pipe’s condition, many proactive operators are deploying SmartBall technology,  a free-swimming multi-sensor tool for long inspections of piggable and difficult to pig liquid and gas pipelines 4 inches and larger. This advantage makes the ball-shaped tool an excellent choice for traversing not just standard diameter pipes, but for smaller diameter liquid lines and for gas pipelines with loops and frequent sharp bends and heavy wall fittings.

During an inspection, the SmartBall sensors collect acoustic, pressure, temperature, magnetic and inertial data from inside the pipeline.

Primary applications for the SmartBall tool

SmartBall surveys can be conducted independently, at regular intervals, as part of a routine pipeline integrity management program, or as a value-add to inspection programs along with hydro-testing, ILI, or direct assessment.

The tool is launched and retrieved at existing pig traps and is tracked using proprietary acoustic receivers and/or Armadillo pig tracking boxes (AGMs). The location data from acoustic receivers and tracking boxes is used during data analysis to locate any anomalies.

SmartBall technology has three primary applications, and the multi-sensor tool can provide a variety of pipeline data.

1. Confirmation of Containment

Regular confirmation of containment surveys are an important part of integrity management as leaks are often a preliminary indicator of pipe failure.

Unlike conventional leak detection systems, confirmation of containment with SmartBall supplements these systems. The SmartBall tool directly passes leaks, and is therefore capable of detecting losses as small as 150 mL/min, which can be several orders of magnitude more sensitive than conventional methods.

SmartBall surveys can also complement regular ILI surveys by addressing potential pinhole anomalies that have aspect ratios below the reporting threshold of ILI systems.

2. Pressure and Temperature profiles

As the SmartBall is rolling and not sealing against the pipe ID, as conventional pigs do, the tool can also record precise pressure and temperature profiles. The SmartBall platform can be deployed in gas pipelines, where pressure and temperature profiles can be integrated into flow models to assess the points where water vapor may condense out of the gas.

The tool can also be used to assess the point where high temperatures from pump or compressor output may have affected the pipe coating, as well as in settings to validate and improve SCADA and mass balance systems.

3. Pipe Wall Assessment and Inertial Mapping

During inspection, the SmartBall Pipe Wall Assessment (PWA) tool collects magnetic data that can provide a screening of the pipe wall for stress resulting from features like large cracks, large wall loss, dents and points of excessive loading.  The test can also complement hydrostatic testing, as it can survey the pipeline before and after hydro-tests to identify stress that is indicative of pressure reversals.

In addition, the SmartBall PWA tool can produce a girth weld and joint tally for the pipeline, as well as can confirm locations of bends and general geometry of the pipeline.

Helping operators make better decisions

Admittedly, SmartBall is not designed to compete with high resolution technologies like Magnetic Flux Leakage (MFL), which can provide detailed wall loss data.

What SmartBall can do is complement other integrity tools by providing additional data sets to ensure pipeline integrity. In a single deployment, it can detect anomalies associated with pinhole leaks and stress that doesn’t necessarily involve wall loss; e.g. geotechnical strains.  It can also detect change in pressure and temperatures.

Ultimately, the SmartBall tool can help capture enough data to confirm the integrity of the pipe and give operators enough microscopic knowledge to make better, informed, risk-based decisions on the health of their pipelines.

Longboat Key Aerial View

When much of your critical sewer pipeline lies buried under a bay of shimmering ocean water, the challenges required to assess its condition may seem daunting. That task faced the Town of Longboat Key, an affluent retirement community located on the barrier island of the same name off the west coast of Florida.

Sensitive to environmental, health and safety issues, the Town has been concerned about their 20-inch ductile iron pipe (DIP) force main installed in 1973. Inspections have been conducted in 1996, 2007 and 2011 with ultrasonic and visual methodologies for assessment.

Aside from being the only wastewater discharge from the island, approximately two miles of the four-mile pipeline runs under the Sarasota Bay before heading to the mainland, where it discharges into the Manatee County Southwest Water Reclamation Facility. The Town designated this force main as a priority pipeline due to the high consequence of failure, and is proactively managing this asset.

With talks of constructing a redundant pipeline, an island resident inquired about the condition of the existing force main and so the Town’s familiar engineering consultant, Greeley and Hansen, contracted Pure Technologies (Pure) as part of the comprehensive condition assessment project.

One of the challenges in assessing DIP is determining if the pipe has undergone any loss of wall thickness due to internal or external corrosion, which are the primary causes of failure.

SmartBall with case and insertion tools

SmartBall® platform provides a variety of condition data in a single deployment

To maximize the amount of actionable information to be gleaned from the force main project, Pure proposed leak and gas pocket detection services coupled with a pipe wall assessment (PWA) utilizing the SmartBall technology platform.

SmartBall is a multi-sensor inspection platform that provides utilities with a variety of pipeline condition data in a single deployment. Because the tool doesn’t disrupt service, it integrates easily into a management strategy to help pipeline owners reduce water loss, screen their network for problem areas and gain a better understanding of the condition of their assets.

SmartBall PWA technology is a screening tool that provides an indication of pipe wall stress on metallic pipes. The technology can be used as a first stage of pipeline condition assessment to help make informed decisions to focus higher resolution investigations, inspections, data collection and subsequent management of the pipeline.

SmartBall was also used to locate leaks and gas pockets in the line. Pipeline leaks are of concern for all pipe materials as they are often found to be the precursor of major failures. A pipeline failure can begin with weakening of the joint or barrel that may include a small leak.

In wastewater pipelines, identifying gas pockets is an important part of safely managing the asset, as concentrations of hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall.  This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Project challenges include underwater tracking throughout inspection

From inception, the biggest challenge was tracking the SmartBall over the 12,000-feet (2.27 miles) subaqueous portion of the pipeline. The Town was very concerned about sedimentation in that section under the bay, and insisted on Pure tracking the SmartBall PWA sensor tool throughout the inspection.

To accommodate the Town’s tracking request, 11 surface-mounted acoustic sensors (SMS) were placed along the pipeline to track the progress of the SmartBall tool during the inspection. SmartBall receivers (SBRs) were connected to the sensors on the pipeline to track the tool during the inspection based on information and drawings supplied by the Town.

Monitoring data collected during inspection

Results from acoustic and electromagnetic anomalies

From the data collected and analyzed, SmartBall detected zero (0) acoustic anomalies characteristic of leaks and zero (0) gas pockets during the inspection. This indicated no leaks within the detection limits of the detection technology.

At the same time, of the 1,133 identified pipe segments, 95 (8.4 percent) showed signals not attributed to known features.  The anomalies identified from the SmartBall PWA analysis included one large anomaly, 18 medium-sized anomalies and 76 small -sized anomalies. The electomagnetic signals associated with 28 of the 76 small anomalies appeared to be similar or repeatable, leading to the likelihood that a manufactured difference in pipe design exists between these 28 pipe sections.

More accurate GIS data revealed

Based on the PWA results, Pure recommended choosing a diversity of pit locations and assessing these with external verification techniques (e.g. high resolution magnetic flux leakage, pulsed eddy current, ultrasonic thickness testing, etc.) to further evaluate the probability of pipeline failure.

As well, Greely and Hansen (and the Town) now have a better handle on the spatial data of the system (GIS) and by statistically analyzing the data, can now develop pipe management strategies for the short-term management and long-term renewal strategies for the force main. By its proactive approach to asset management, the Town sets itself apart as a great example of how a community can plan for its long-term infrastructure needs.

Amsterdam, Holland

Would you take on a new pipeline inspection challenge, even if you knew it would land you in hot water?

Recently Pure Technologies (Pure) was able to chalk up success by adding one more type of pipeline to its inspection resumé. In this instance it was a district heating pipeline owned and operated by Eneco, one of the largest producers and suppliers of natural gas, electricity and heat, serving more than two million business and residential customers in the Netherlands.

District heating make sustainable sense

The concept of heat pipelines makes a lot of environmental sense. Throughout northern Europe, many municipalities and power generators have built closed systems of vacuum-insulated pipelines that circulate hot water from power plants and incinerators, sometimes above 100°C, through radiators in houses, businesses and other structures. This is an efficient method of heating buildings, and boasts a 98 percent heat retention rate during transmission.

SmartBall with case and insertion tools

Pure performs SmartBall leak and gas pocket detection survey

Recently Eneco contracted Pure to perform a comprehensive SmartBall® leak and gas pocket detection survey of the Centrale Merwedekanaal to WOS District Heating System. This is a 500 mm steel pipeline within a 700 mm steel pipeline of which a vacuum is created in the annular space to insulate the hot water. The survey purpose was to locate leaks and pockets of trapped gas present in the pipeline at the time of inspection.

The subject pipeline, originally installed in 1985, was suspected of having a leak, owning to an observation of water present in the annular space. As mentioned, the heating system pipeline consists of an inner 500 mm steel pipeline and an outer 700 mm steel pipeline, with a vacuum maintained in-between. The lines, constructed both above ground and below ground, incorporate numerous 90 degree bends and u-shapes, to allow for expansion and contraction as the product temperature changes.

Tracking with a laptop connected to the SmartBall

During the project, Pure inspected approximately 2.6 kilometers of the pipeline, with the goal to locate the leak(s) causing the water loss.

For the survey, Pure proposed the SmartBall leak and gas pocket detection system, a free-swimming, acoustic-based technology that detects anomalous acoustic activity associated with leaks or gas pockets in pressurized pipelines.

While other leak detection techniques such as noise loggers and correlators may identify a single leak or gas pocket between each sensor, they cannot accurately locate the limits of an anomaly nor identify multiple anomalies. In this specific case, the use of noise loggers is hindered by isolation. The SmartBall tool travels directly past each acoustic anomaly of interest on the inner pipe and thus significant advantages are recognized.

Unique challenges to overcome

The standard procedure for tracking the SmartBall tool depends on positioning acoustic sensors on the outside of the inspected pipe and listening to the device as it passes.

Since the line is so well insulated from heat loss, it is also well insulated against sound transfer, which meant it unlikely for good tracking on any sensor mounted to the outer 700 mm pipe. Additionally, Eneco was understandably averse to compromising the integrity of the vacuum seal of the line, and therefore did not wish to expose the 500 mm pipe to mount sensors.

In the absence of external tracking means, other reference points in the data are critical for accurately locating anomalies within the pipeline.  SmartBall contains gyroscopes that can measure bends in the pipeline that it traverses, and as there were many aforementioned 90 degree bends, these were clearly seen in the data.  The bends in the Eneco pipeline made for great geospatial reference points and therefore allowed for locating anomalies with relatively high confidence.

Pipeline over the surface

SmartBall tool deployed to survey district heating pipeline

The acoustic data recorded by the SmartBall tool was analyzed and cross-referenced with the position data. From the data collected and analyzed, the SmartBall device detected five (5) possible weaknesses, which were clearly visible in the data. Zero (0) gas pockets were detected.

The results give Eneco actionable data regarding the condition of their pipeline, and despite challenges, the assessment is proving its worth. It’s a great example of a proactive utility taking efforts to maximize its capital expenditures.

City of Belmont Skyline

To help budget over the next 20 years, the City of Belmont (City) wanted to proactively understand and assess their force mains through a comprehensive condition assessment. Located in the San Francisco Bay area, Belmont serves 26,000 residents and maintains more than 90 miles of sewer mains comprising of 85 miles of gravity mains and 5 miles of force mains, of varying size and material.

To address its goal, the City contracted Pure Technologies (Pure) to deploy a wide range of both proprietary and third-party technologies and techniques to achieve a holistic assessment. The risk associated with a failure was significant, owing to a lack of redundancy, difficulty and cost of bypassing flow and potential for severe consequences to public health and the environment.

Pure provided inspection and condition assessment services on eight of the City’s force mains. The project scope included GAP analysis, condition assessmentengineering analysis, and necessary repair or replacement recommendations to establish a long-term management plan for Belmont’s force main inventory.

Variety of solutions and technologies used to assess inventory

A number of solutions and technologies were used to assess Belmont’s force mains. Phase one involved a GAP analysis, performed by interviewing operations staff and reviewing historic information, GIS maps, and drawings.

Phase two included an assessment of the eight force mains through the use of various technologies, including SmartBall® leak and gas pocket detection, SmartBall Pipe Wall Assessment (PWA), soil corrosion survey, hydrogen sulfide monitoring, transient pressure monitoring, and hydraulic evaluation.

SmartBall with extraction tool and controls

SmartBall leak detection is a free-flowing tool used to locate leaks and gas pockets in pressurized pipelines. The tool is equipped with a highly sensitive acoustic sensor that is able to locate “pinhole” sized leaks. Pipeline leaks are of concern for force mains as these emit illegal discharges to the environment and are often found to be a precursor of major failures. In metallic pipes, gas pockets are of significant concern, as hydrogen sulfide gas within wastewater may be subsequently converted to sulfuric acid by bacteria in the slime layer on the pipe wall.  This may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Pipe wall assessment (PWA) is a screening technology for assessing the condition of metallic pipelines by identifying pipe sections with increased levels of stress. SmartBall gas pocket and leak detection services were used for the 8-12-inch diameter mains.

Transient pressure monitoring and hydraulic evaluation used on the smaller mains

Transient pressure monitoring and hydraulic evaluation was used to evaluate the smaller 6-inch force mains. Hydraulic pressure transients occur in pipelines when steady-state-conditions of the system change due to pressure or flow disturbances. It is important to conduct transient pressure monitoring and hydraulic evaluation because damage from pressure transients can include cracking of mortar coating or lining, crack propagation, movement at joints, and structural fatigue.

During the condition assessment, Pure evaluated the likelihood and consequence of failure criteria and developed a scoring system, placing each force main in one of three categories: low risk, moderate risk, or high risk.

Satellite image with location map

For phase three, Pure conducted a life cycle and financial analysis, outlining the potential life and replacement/repair costs for each force main. By comparing results identified in each assessment phase, the City of Belmont can now move forward and create both a short-term and long-term rehabilitation plan.

“Through innovative technology, comprehensive data gathering and analysis, Pure Technologies helped us to assess condition of our large force mains within budget constraints, to help us plan our future capital improvement program…”

Each main evaluated with an overall risk rating

The GAP analysis included a review of all the information given to Pure at the beginning of the project and included historic information, GIS, and some drawings. During this phase, many of the parameters such as pipe length and material were found to differ from what was originally thought through the process of internal inspections and external excavations.

Pure conducted the SmartBall leak and gas pocket detection survey on four force mains and found 21 unique anomalies. The SmartBall PWA discovered seven indications of stress on the two metallic pipelines.  Hydraulic analysis of all eight force mains revealed that several force mains have a nominal increased potential for failure due to significant pressure swings and a large quantity of pumping cycles. Hydrogen sulfide monitoring was performed on six force mains to quantify the potential for internal corrosion caused by hydrogen gas.

Once all tests were completed, each force main was evaluated by its likelihood of failure and consequence of failure, and then given an overall risk rating.

Assessment includes life cycle and financial analysis

By determining overall risk for each force main, Pure was able to complete a life cycle and financial analysis and provide Belmont with the best data available to make long-term decisions on managing their assets. Each force main was given an estimate of its remaining life as well as a financial comparison of different management option costs. The financial comparison took capital replacement costs into account with Pure’s Assess & Address™ approach in both the best case and worst case scenarios. In both instances, the management options showed costs significantly lower than a full capital replacement option.

Using both the data and short and long-term recommendations provided by Pure, Belmont is now fully equipped to make the best possible decision and budget accordingly over the next 20 years, while continuing to address and mitigate risk.

Traditional methods of wastewater condition assessment focuses almost exclusively on the gravity system and valve
actuation, using tools such as smoke testing, CCTV, and zoom cameras. While effective on gravity mains and valves,
these methods are not applicable in force mains.

Inspecting force mains is more challenging due to lack of redundancy, lack of access points, cost, technology limitations, while the consequence of force main failures can be significant financially, environmentally and socially.

A successful wastewater asset management program uses a holistic approach which prioritizes the entire system, collects data through condition assessment and provides analyzed reports in order to develop a targeted, informed action plan for long-term sustainability of a collection sewer system.

Lisboa Map

SIMAS Oeiras e Amadora distributes drinking water to 350,000 customers in the Lisbon region of Portugal.

Drinking water systems degrade over time, with the useful life of the pipe and component parts often lasting for decades. Of course, age is only part of the equation. The deterioration of any particular pipeline depends on a multitude of factors, including pipe material and class. To complicate matters, factors such as soil environment, chemical properties of the water, climate changes, and operational particulars can all contribute to weakened pipes.

All that said, when a suspected leak develops in a pressured main after only five years in operation, it’s important to locate and repair the leak and determine what operational, environmental or installation factors led to the failure.

That was the situation faced by Intermunicipal Service Oeiras and Amadora, a water management company responsible for the distribution of drinking water for the municipalities of Amadora and Oeiras in the Lisbon region of Portugal. SIMAS Oeiras e Amadora distributes water to more than 350,000 customers who have come to rely on the public company for their water services.

The F. Passarinhos-Atalaia duct is a pressurized pipeline that supplies water to one of eight reservoirs operated by SIMAS Oeiras e Amadora in the municipality of Amadora. Installed in 2007, the large 600 mm (24-inch) transmission main, made from ductile iron material, delivers drinking water to approximately 31 percent of Amadora’s residents, making it a critical part of the municipality’s buried infrastructure.

Pressure drop indicated possibility of critical leak

In 2012, SIMAS Oeiras e Amadora detected a noticeable pressure drop in the system, indicating the possibility of a critical leak, the predecessor of a potential rupture that could negatively impact the environment and significantly disrupt day-to-day life in the community.

When traditional leak detection methods—geophones and acoustic correlators­ were unable to detect the location and size of the leak, SIMAS Oeiras e Amadora called on its contractor to perform a leak detection survey using the innovative SmartBall tool from Pure Technologies (Pure).  Because of the criticality of the line, the survey was conducted while the pipeline remained in operation.

Since 2007 utilities all over the world have been using Pure’s SmartBall pipeline inspection technology to save millions of dollars in water loss and prevented water main breaks.

SmartBall inside a pipe

Pure’s SmartBall tool can be launched while the main remains in operation.

SmartBall tool launched without disrupting service

Pure’s patented SmartBall tool is an aluminum-core, foam-shell ball packed with several different sensors that can be launched into a water main without any disruption to client service.

Unlike traditional external listening tools that have limited success on large diameter pipes, SmartBall is the industry’s only free-flowing multi-sensor technology that provides the highest degree of accuracy, since as the ball rolls, it can inspect every inch of a water main to detect potential problems such as leaks and gas pockets. Its highly sensitive acoustic sensors can locate ‘pinhole’ leaks and gas pockets within a location accuracy of 1.8 meters.

The SmartBall was inserted into the pipeline through a 6” gate valve and the journey took two hours and 49 minutes. One small leak was detected, 863 meters from the insertion site. This leak was repaired and allowed SIMAS Oeiras e Amadora to recover costs associated the loss of non-revenue water, had it remained undetected.

Assess assets from inside the pipe rather than from external clues

Leak detection is a necessary step to reduce water loss and prevent major water main breaks. The benefits of leak detection are obvious in increased revenues, lower risk of contamination, lower liability due to a reduction of main breaks, and increased public trust.

Although the SmartBall tool detected just one leak, the inspection gave SIMAS Oeiras e Amadora the capacity to assess assets from inside the pipe rather than drawing conclusions from indirect, external clues. If leaks are discovered early, operators can take necessary action to makes repairs before they become a major problem.

This process allows progressive operators like SIMAS Oeiras e Amadora to develop a sustainable long-term strategy for managing their critical buried assets.

Amsterdam, Holland

Would you take on a new pipeline inspection challenge, even if you knew it would land you in hot water?

Recently Pure Technologies (Pure) was able to chalk up success by adding one more type of pipeline to its inspection resumé. In this instance it was a district heating pipeline owned and operated by Eneco, one of the largest producers and suppliers of natural gas, electricity and heat, serving more than two million business and residential customers in the Netherlands.

District heating make sustainable sense

The concept of heat pipelines makes a lot of environmental sense. Throughout northern Europe, many municipalities and power generators have built closed systems of vacuum-insulated pipelines that circulate hot water from power plants and incinerators, sometimes above 100°C, through radiators in houses, businesses and other structures. This is an efficient method of heating buildings, and boasts a 98 percent heat retention rate during transmission.

SmartBall with case and insertion tools

Pure performs SmartBall leak and gas pocket detection survey

Recently Eneco contracted Pure to perform a comprehensive SmartBall® leak and gas pocket detection survey of the Centrale Merwedekanaal to WOS District Heating System. This is a 500 mm steel pipeline within a 700 mm steel pipeline of which a vacuum is created in the annular space to insulate the hot water. The survey purpose was to locate leaks and pockets of trapped gas present in the pipeline at the time of inspection.

The subject pipeline, originally installed in 1985, was suspected of having a leak, owning to an observation of water present in the annular space. As mentioned, the heating system pipeline consists of an inner 500 mm steel pipeline and an outer 700 mm steel pipeline, with a vacuum maintained in-between. The lines, constructed both above ground and below ground, incorporate numerous 90 degree bends and u-shapes, to allow for expansion and contraction as the product temperature changes.

Tracking with a laptop connected to the SmartBall

During the project, Pure inspected approximately 2.6 kilometers of the pipeline, with the goal to locate the leak(s) causing the water loss.

For the survey, Pure proposed the SmartBall leak and gas pocket detection system, a free-swimming, acoustic-based technology that detects anomalous acoustic activity associated with leaks or gas pockets in pressurized pipelines.

While other leak detection techniques such as noise loggers and correlators may identify a single leak or gas pocket between each sensor, they cannot accurately locate the limits of an anomaly nor identify multiple anomalies. In this specific case, the use of noise loggers is hindered by isolation. The SmartBall tool travels directly past each acoustic anomaly of interest on the inner pipe and thus significant advantages are recognized.

Unique challenges to overcome

The standard procedure for tracking the SmartBall tool depends on positioning acoustic sensors on the outside of the inspected pipe and listening to the device as it passes. Since the line is so well insulated from heat loss, it is also well insulated against sound transfer, which meant it unlikely for good tracking on any sensor mounted to the outer 700 mm pipe. Additionally, Eneco was understandably averse to compromising the integrity of the vacuum seal of the line, and therefore did not wish to expose the 500 mm pipe to mount sensors. In the absence of external tracking means, other reference points in the data are critical for accurately locating anomalies within the pipeline.  SmartBall contains gyroscopes that can measure bends in the pipeline that it traverses, and as there were many aforementioned 90 degree bends, these were clearly seen in the data.  The bends in the Eneco pipeline made for great geospatial reference points and therefore allowed for locating anomalies with relatively high confidence.

Pipeline over the surface

SmartBall tool deployed to survey district heating pipeline

The acoustic data recorded by the SmartBall tool was analyzed and cross-referenced with the position data. From the data collected and analyzed, the SmartBall device detected five (5) possible weaknesses, which were clearly visible in the data. Zero (0) gas pockets were detected. The results give Eneco actionable data regarding the condition of their pipeline, and despite challenges, the assessment is proving its worth. It’s a great example of a proactive utility taking efforts to maximize its capital expenditures.

Over the past decade, the world has been gripped by many stories of pipeline failures, especially those with severe consequences to the environment and human life. These failures have resulted in billions of dollars in remediation costs, and understandably, this makes pipelines some of the most regulated assets in the world. The use of inline inspection (ILI) tools, such as pigs, is the most common form of pipeline integrity. Pipeline pigs are tools inserted into a pipeline and pushed along by the flow of product through the pipeline. The tool has multiple functions, and can be used to clean and inspect the pipeline, as well as to purge different products in a multiproduct pipeline. When these tools are operating in a live pipeline, it is important to know their precise location and speed, as they are very expensive to replace. A lost or stuck pig can obstruct product flow, causing unwanted service disruptions, or at worst, pipeline ruptures.
Geophone

When tracking a pig through an oil or gas pipeline, it is often difficult to know if it has passed a tracking location, especially for inexperienced pig trackers. The majority of legacy tracking is done only with a standard geophone, a device which converts ground movement into voltage, and relies solely on the word of the technician tracking the pig. By using only a standard geophone, a technician cannot reassure an ILI vendor when the pig has passed a location. The geophone can give a technician many false positives; therefore, the technician’s word will not inspire much confidence in an ILI vendor.

Lack of experience can lead to tracking challenges

To be able to identify a pig passage with only the use of a standard geophone, an experienced tracker needs to reduce the likelihood of error. Many of the trackers who are sent out in the field are inexperienced and are unable to provide this. By solely relying on a standard geophone, field technicians can easily miss a pig passing through a station, and can lead to problems later in the run. Accurate pig tracking requires the right tools and defensible data. Remote tracking can be a more efficient system and provides more concrete data than legacy tracking systems.

Reliable tools and data

The Armadillo Tracks system uses multiple sensors to track every pig deployed into a pipeline. The sensors work simultaneously and record a snapshot of each pig passage. These snapshots prove when a pig has passed a tracking location and helps ILI vendors with benchmarking and reporting. With more reliable tools and data, vendors can have peace of mind knowing problems during a pig run will be minimized.

Technical map generated by Pure & Armadillo Tracks

To learn more about how remote tracking systems benefit ILI vendors and the other myths of pig tracking, download the White Paper here.

Download full PDF

SmartBall on a net at the end of a pipe

For this leak detection survey, Pure’s innovative free-swimming acoustic tool gathered critical information about the aging pipeline assets of this historic Arabian city.

This large public utility supplies bulk water to this bustling, historic resort city located in the Arabian Penninsula region. The city’s infrastructure – above ground and below – has recently been modernized to keep up with growth and support the expanding tourist industry.

Recognizing that its underground infrastructure was reaching the end of its service life, the water utility called on Pure Technologies Abu Dhabi (Pure) and its local agent International Aramoon Company, to perform a series of SmartBall leak detection surveys on 150 kilometers (93 miles) of its ductile iron pipe (DIP) water network.

SmartBall gathers critical information about the city’s buried pipeline assets

Every pipeline is unique and comes with its own set of assessment challenges. When an operator has a strong understanding about the risk and operational conditions of their system, an appropriate and defensible inspection plan can be developed.

For this project, Pure introduced its proprietary SmartBall leak detection platform to identify and locate leaks and pockets of trapped gas along the water pipeline.

Pure began the SmartBall inspection project facing a number of challenges. For starters, due to limited access to historical drawings, the pipeline system and route was relatively unknown, with only a scanned copy of the schematic available for review.  Operational challenges included fluctuating flows within the pipeline, as well as a lack of access points for insertion and extraction.

To make matters more difficult, Pure faced issues related to the isolation of branches during the inspection.  The utility could not provide the option for a valve exercise prior to the trial “dummy” SmartBall run, which was decided on to eliminate the chances losing the real SmartBall.

Acoustic intensity of anomaly and actual leak located

 Left: Acoustic intensity of anomaly.   Right: Actual leak located

SmartBall acoustic tool collects data as it rolls through the pipeline

Pure began the project with an ocular visit attended by the client and a pipeline maintenance operator to understand the right of way and alignment of pipeline sections. The distances between pipeline features were measured using an odometer, while bend locations were assumed based on street references from the schematic drawing.

Since the pipeline was non-redundant and could not be shut down, insertion and extraction points were provided by hot tapping the pipeline.

Prior to the official SmartBall launch, Pure conducted a trial run with a dummy ball on each pipe section to eliminate the chance of losing the SmartBall on its journey. Both the dummy ball run and SmartBall inspection were deployed on the same day to reduce the possibilities of flow fluctuations.

As the free-swimming SmartBall tool rolls through the pipeline, it collects acoustic data. The acoustic sensor identifies the sound of water leaving the pipeline, or the sound of trapped air at the top of the pipeline, which can reduce water flow and increase strain on pumps.

Easy to deploy, SmartBall also makes it easy to screen the pipeline for leaks, which could indicate a structural problem that deserves further attention.

Assessment identifies 21 leaks on 68 kilometers of pipe

To date, the SmartBall tool has inspected more than 68 kilometers (29 miles) of pipe within the city’s network, with additional runs planned. The inspection resulted in the identification of 21 leaks of various sizes. Of the total, 14 leaks have been verified and repaired by the utility.

The investigation confirmed that with good condition assessment, asset life can be extended, while managing utility’s exposure to risk. This mindset sets a good example for other Arabian cities to follow in developing a sustainable long-term strategy for managing aging infrastructure.

Scottish Water takes innovative and responsible approaches to pipeline management. To assess the condition of its Newmore Raw Water Main, the water provider used PipeDiver™ inline inspection technology, the first use of the technology in Europe.

Scottish Water (SW) is the fourth largest water and wastewater provider in the United Kingdom (UK), serving more than 5 million customers in 2.4 million households. As one of the country’s largest businesses, with a £1 billion (US$1.54 billion) annual turnover, SW also acts as the wholesaler of water and wastewater services in the competitive market for business customers in Scotland.

A leader in the industry, SW has long undertaken innovative and responsible approaches to pipeline management. For its inventory of strategic infrastructure assets, the water operator is employing advanced techniques to build detailed criticality and integrity profiles. These profiles will be used to develop and maintain dynamic and fully detailed pipeline management plans.

Spray released from air valve and Pure crew readying PipeDiver for insertion

(Left) Pure and Scottish Water crew standing by as spray released from air valve. (Right) Pure crew readying PipeDiver for insertion to assess condition of Newmore Raw Water Main.

Inspection covered 14.6 kilometers (9.1 miles) and spanned 3,382 pipes

Scottish Water had long been working on conducting a risk-based condition assessment of its transmission main that delivers raw water from the Redburn to a reservoir feeding the Newmore water treatment plant, in the Inverness region of Scotland.

The purpose of the inspection was to locate and identify leaks and pipes with stress, using proprietary leak detection and electromagnetic technologies. The inspection covered 14.6 kilometers (9.1 miles) and spanned a total of 3,382 pipes composed of 685-millimeter (27-inch) and 762-millimeter (30-inch) pipe.

PipeDiver technology locates and quantifies stress

Pure Technologies, in partnership with WRc, began its initial screening assessment in March 2015 with SmartBall™ technology, a free-swimming leak and gas pocket detection tool used to record acoustic data on the pipeline. This data was evaluated to identify acoustic anomalies associated with leaks and pockets of trapped gas.

From the data, Pure identified 5 anomalies associated with leaks and no acoustic anomalies characteristic of pockets of trapped gas.

In August 2015, a few months after completing the leak detection survey, Pure mobilized its team to undertake a first within Europe – a structural condition assessment using PipeDiver™ technology, an inline tool used to locate and quantify distress.

The PipeDiver tool is free-swimming and comprised of three parts – a battery module, electromagnetic module and a tracking module. The electromagnetic sensors are located on each fin and collect a magnetic signature for each pipe section to identify anomalies that are produced by damage to the structural component for the integrity of the pipe.

Inspection results

The inspection determined 12 pipes with EM anomalies consistent with pipe distress damage.

To repair, replace or leave alone? That is the risk-based question

The PipeDiver inspection determined that 12 pipes in the Newmore Transmission Main displayed electromagnetic anomalies consistent with damage. Effective analysis of electromagnetic data first requires baseline knowledge of how the electromagnetic signal behaves when no damage is present. This baseline is then compared to the data signal received when damage occurs on the pipe. To understand how the data signal responds, Pure performed calibration scans on pipes similar to the inspected pipe, provided by Scottish Water.

While the electromagnetic technology provides data for structural deterioration, the challenge is to determine how much damage creates an unacceptable level of risk, thereby requiring intervention actions.

Pure has developed an innovative approach for pipeline management using structural models along with hydraulic evaluation data to deliver a Pipe Performance Curve used for the management of a pressure main. The decision-making tool plots stress versus pressure, and will allow SW to understand when a pipe is trending toward ultimate failure, which in turn will help in making defensible investment decisions.

Utilities Complete Condition Assessment Of Bar-Wrapped Pipe With Smartball®, Pipediver®, And Robotic Platform Tools

By the early 1940s, cast iron pipe was losing its historic cachet as the go-to material for new buried infrastructure. Cast iron’s replacement was bar-wrapped pipe (BWP), and it quickly gained acceptance as a reliable, durable and cost-effective pipe material for use in large-diameter transmission and sewer force mains.

Typically, BWP consists of a welded steel cylinder with reinforcing bars wrapped around the cylinder to provide strength. An internal concrete lining and external mortar coating provide corrosion protection to the steel components. The watertight membrane enables the composite pipe to withstand high internal pressures and the effects of external earth and traffic loads.

Until recently, BWP condition assessment proved difficult

Despite early adoption from many pipeline operators, the downside to BWP has been the difficulty to assess the pipe’s condition, where failures are often precipitated by deterioration of the reinforcing bars and long periods of leakage that often go undetected.

It’s now 70 years later, and the methods to assess the condition of bar wrapped pipe have only been recently developed and commercialized. On this forefront, Pure Technologies is recognized for its toolbox of condition assessment technologies that can identify broad areas of cylinder corrosion and bar breaks.

Two Texas cities join forces to assess shared BWP water supply line

In one specific case, the city of Irving and a partnering agency in North Texas joined together to initiate a condition assessment project of their shared water supply line, made up primarily of bar-wrapped pipe. Constructed in 1955, the 48-inch Jamison Water Transmission Main is a critical non-redundant pipeline that conveys potable water to a combined population of 400,000 residences within the Dallas Fort-Worth Metroplex.

The two agencies worked side by side to implement an Assess and Address™ pipeline inspection protocol to determine the condition of the pipeline and to increase the utilities’ reliability of water delivery.

The condition assessment utilized inline acoustic leak and air pocket detection, robotics with high definition CCTV and enhanced electromagnetic detection, transient pressure monitoring and non-linear Finite Element Analysis (FEA) of the steel cylinder corrosion and broken bar wraps.

The results concluded that 97 percent of the 583 pipes inspected had no detectable damage. Less than 3 percent of the total pipes inspected exhibited minor distress, of which 15 (2.5 percent) pipes exhibited thinner steel cylinder.

Through close collaboration, the two agencies were able to effectively manage a shared asset with the goal of preventing disruptive and expensive pipe failures. The information gained from the assessment will allow for the implementation of a cost-effective, long-term management plan to extend the life of the pipeline.

Trinity River Authority of Texas (TRA) evaluates 8.8 miles of critical BWP transmission main

In a second case involving BWP, Pure collaborated with Trinity River Authority on assessing the condition of a pipeline that is a critical link in the reliable delivery of drinking water to five cities within the Dallas-Fort-Worth Metroplex. The aging pipeline was scheduled for replacement due to previous failures and inability to be removed from service for repairs.

To understand the overall pipeline condition, TRA contracted Pure to inspect and evaluate the pipeline by conducting comprehensive hydraulic, leak detection and condition assessment on 8.8 miles of the 30-inch bar-wrapped pipe.

For the leak and air pocket assessment, TRA used the SmartBall® inspection tool, a non-destructive, free-swimming technology that measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines. Regular leak detection inspections can help utilities identify leaks that may not be visible at the surface.

Increased reliability, reduced capital costs

For the structural inspection, TRA used PipeDiver®, a free-swimming electromagnetic tool that identifies bar breaks and broad areas of cylinder corrosion in BWP using PureEM technology while the line remains in service.

The inspection of the BWP identified 14 pipes with bar break damage and 72 pipes with electromagnetic anomalies resembling cylinder defects out of 1284 inspected pipes. By repairing specific pipe sections with deterioration, TRA was able to avoid replacing the entire pipeline at a high capital cost and continue providing reliable service to customers in the region.

Dallas Water Utilities Discovers Massive Hidden Sinkhole And Achieves Huge Savings Through Annual Leak Detection Program

The year began with the Lone Star state experiencing its fourth year of drought, compelling State Governor Greg Abbott to reissue an Emergency Disaster Proclamation in early May to deal with the declining aquifer levels and severe water shortages. Only a few weeks later, torrential rains flooded so much of the state that the Governor issued another Emergency Disaster Proclamation to prepare for the new crisis. Then, another long stretch of baking heat.

Weather extremes push water utilities to the limit

For most utilities, weather can play havoc with buried infrastructure. While drought can cause the dry brittle ground to shift and pipes to break, excessive rain can result in washouts, loss of bedding and risk for accelerated pipe failures.

In 2015, weather extremes in such a short period taxed water utilities across Texas. Despite the challenging environmental conditions, Dallas Water Utilities (DWU) moved forward to carry out its annual leak detection program. Over the years, DWU has focused its water loss reduction efforts on both its critical large-diameter transmission mains, which have the highest consequence of failure, and on its distribution systems.

Pipe leaking

Detection results include discovery of a large pipe leak near a major roadway

Staff inserting Sahara tool

Crews successfully used the Sahara® tool to locate 10 leaks in 16 miles of inspection.

DWU’s first condition assessment program using electromagnetics was completed in 2001, followed by the use of newer leak detection technologies in succeeding years. The program is now in its 14th year of operation, and DWU has become a showcase utility for proactive pipeline management, a fact recognized by the Texas Water Development Board.

DWU adds 16 miles to its leak detection program in 2015

DWU’s distribution system is one of the largest in the United States, being a regional provider, the utility delivers water service to 2.4 million customers within the Dallas and surrounding city limits. The major distribution system includes over 4,900 miles (7,800 km) of distribution and transmission mains.

DWU’s goal is to continually evaluate, upgrade and replace its water and wastewater assets in order to make its systems operate efficiently. DWU’s long-time partner in this infrastructure endeavour is Pure Technologies (Pure). This year Pure was contracted to perform leak and air pocket detection for 16 miles (25.7 kilometers) of water mains made of a variety of materials, including prestressed concrete cylinder pipe (PCCP), cast iron pipe (CIP) and ductile iron pipe (DIP).

DWU deploys inline detection tools

For inspection of its transmission mains, DWU has long used Sahara leak detection and inline closed circuit video (CCTV) provided by Pure. More recently, DWU has also used SmartBall® technology for longer inspections.

Sahara is the first tool designed for live inspection of large-diameter mains, and one of the most accurate tools available for detecting leaks, gas pockets and structural defects in complex networks typically found in urban environments.

The tool is pulled by the flow of water by a small drag chute while the line remains in service. When the sensor is inserted into a 2-inch tap, it remains tethered to the surface. This allows for real-time results and maximum control, as the tool can be winched back and forth to immediately confirm suspected leaks and other anomalies. The sensor is also tracked at ground level by a staff member, allowing for precise spot markings for excavations.

Detection results include discovery of massive sinkhole near major roadway

The 2015 inspections, conducted over 23 days, challenged the Pure and DWU crews as they faced an environment with temperatures soaring to 104°F (41°C) on many consecutive days.

In spite of the trying working conditions, the crews successfully used the Sahara tool to locate 10 leaks in 16 miles of inspection. This included the unexpected discovery of a very large leak in the barrel of a 12-inch ductile iron water main. DWU’s proactive repair prevented a collapse since the large leak was creating a cavernous sinkhole near a major roadway.

By locating and repairing the leak, which had been seeping water for an estimated year, DWU averted a potential catastrophic crisis and saved the utility at least 893,000 gallons of lost water per year, equivalent to filling 1353 Olympic-sized swimming pools.

Olympic-sized swimming pool

Large leak discovery saved DWU at least 893,000 gallons of lost water annually, equivalent to filling 1353 Olympic-sized pools.

Sahara and SmartBall inspections in Dallas have been extremely successful, locating 160 leaks in 209 miles. The estimated water savings from these leaks is about 4 MGD. For DWU, the reduction in failures has reduced loss claims and service interruptions, as well as reduced treatment and delivery costs.

Whatever the weather, DWU is moving forward.

The Usutu Water Scheme supplies raw water to a number of coal-fired power stations and towns in the Mpumalanga province of South Africa. The bulk water pipeline, completed in the late 1970s, consists of large diameter (DN1300 mm) pre-stressed concrete non-cylinder pipe (PCP) that links two mains for a total of 90 kilometers between the Rietspruit, Davel and Kriel Reservoirs.

Recognizing that the infrastructure might be reaching the end of its lifespan, the Department of Water and Sanitation (DWS) called on SSIS Pipeline Services, which represents Pure Technologies in South Africa, to conduct a comprehensive condition assessment of the pipelines.

Destructing the old to help evaluate the current pipe state

Due to a lack of records, DWS provided Pure with old removed pipes, as well as spare pipes that were destructively evaluated to determine the design specs and calibrate the electromagnetic signal to accurately detect wire breaks.

Every pipeline is unique, and if a utility has a strong understanding of the operational conditions of different areas in their system, an appropriate and defensible inspection plan can be developed, pipe by pipe. Pure came onboard bringing its inspection, risk assessment and engineering analysis services, along with its comprehensive suite of technologies to survey the pipeline for leaks, gas pockets and wire breaks.

Civil Engineering Cover June 2015

Pipediver Field crew operators insert the PipeDiver inspection tool into the pipeline.

Field crew operators insert the PipeDiver inspection tool

Pipediver Field crew operators insert the PipeDiver inspection tool into the pipeline.

Ostrich

Project begins with leak detection surveys

For DWS, Pure and SSIS began with leak and air pocket detection surveys, employing Pure’s proprietary SmartBall™ technology. As the free-swimming SmartBall tool rolls through the pipeline, it collects acoustic data. The acoustic sensor identifies the sound of water leaving the pipeline, or the sound of trapped air at the top of the pipeline, which can reduce the water flow and increase strain on the pumps.

Easy to deploy, the SmartBall tool is an excellent screening tool for PCP inspection programs by identifying leaks and air pockets in the main. These areas provide a preliminary look at the condition of the pipeline.

As a follow-up to the SmartBall survey, SSIS employed its Sahara® platform, a tethered tool with attached audio-video surveys to gain a better understanding of the leak locations along the pipeline. A total of ten leaks were detected and accurately located using SmartBall and Sahara.

PipeDiver™ electromagnetic survey evaluates the pre-stressing wires

Because the Usutu pipelines could not be taken out of service, crews inserted Pure’s revolutionary PipeDiver™ tool, which features collapsible fins that allows it to pass through sharp bends, diameter reductions and butterfly valves as it is carried by the flow of water.

The free-swimming PipeDiver inspection platform uses electromagnetic (EM) sensors to evaluate the existing condition of the pre-stressing wires. EM inspections collect a magnetic signature for each pipe section to identify anomalies that indicate zones of wire break damage. The presence of wire breaks in concrete pressure pipe is often a sign of impending failure. This inspection method is the best available technology to determine the baseline condition of the PCP mains.

While the PipeDiver survey was performed, the critical pipeline remained in operation. The entire 90 kilometers of pipeline was inspected in three runs, and the inspections found the majority of pipes to be in good condition.

Investigation replaces uncertainty with peace-of-mind risk assessment

In addition to using to the monitoring technologies described above, Pure also conducted a variety of other risk assessment and engineering analysis services for the project.

This included field verification data to compile a calibrated hydraulic model to mime the steady state and transient behaviour of the pipelines. The results showed that DWS’s current operating procedures worked well to control the flow and prevent pressure surges.

Pure Technologies also completed a finite element analysis (FEA) to quantify the structural ramifications of the broken pre-stressing wires detected by electromagnetic inspection. This analysis was used in tandem with the electromagnetic inspection results in the risk assessment.

DWS sets a good example for managing its transmission main assets

The project highlights the value of embracing a proactive pipeline condition assessment programme using best practices, expertise, and cutting-edge technology.

The investigation confirmed the asset life can be extended, while managing DWS’s exposure to risk and sets a good example for other South African utilities to follow in developing a sustainable long-term strategy for managing their asset

Download full PDF

A ruptured sewer pipe can attract a lot of unwanted attention, even when it happens on private property. Last year, hours before celebrities were to arrive at the Golden Globes Awards show at the Beverley Hills Hotel, a reputed sewer pipe burst, spewing a mess of wastewater on the red carpet, according to media reports. When large pipes fail, it’s usually breaking news. And when the failed pipeline is part of a pressurized wastewater force main network, repercussions to the environment and the public have the potential to be catastrophic, with fallout to a utility’s reputation. In Canada, pressurized force mains that carry sewage make up only about 7.5 percent of the typical wastewater system compared to gravity mains. Because sewer force mains tend to run constantly, and often operate without redundancy, there is little opportunity to assess the pipes. When problems arise, and a critical force main is out of commission, the entire wastewater system can stop, causing overflows or the need to implement costly bypass pumping. Worse still, pollution generated by a raw sewage leak can flood to the surface and into a watercourse. Clean-up costs can be staggering and environmental impacts can be devastating.

PureRobotics device

The PureRobotics platform can assess the structural integrity of force mains and provide inline video to observe internal pipe conditions.

Force mains have unique signs of impending failure

Internally, force mains have unique warning signs of failure. Because of the sewage flow, trapped gas pockets can allow concentrations of hydrogen sulfide gas to be released from solution and subsequently convert to sulfuric acid by bacteria on the pipe wall, leading to corrosion of the pipe wall. As the pipe wall corrodes internally, it becomes weaker and more likely to fail unexpectedly. While corrosion and defect failures on sewer pipelines are a fact of life for wastewater utilities, these failures do not occur systemically. As a result, knowing when to replace and when to preserve assets through close inspection is more critical than ever.

SmartBall with extraction tool and controls

Managing force mains proactively can help utilities prevent environmental regulation violations that are expensive to mitigate.

Addressing the high consequence of failure in wastewater pipes

Aging pipes, increasing costs of failures and high replacement costs represent significant challenges facing force main owners. As a result, utilities have come to rely on Pure Technologies for its suite of technologies that can identify the weak links. Selective rehabilitation of force mains maximizes the life of the asset, typically at 10-15 percent of replacement costs. Pure’s strategy employs a risk-management approach that looks at likelihood of failure (LOF) and consequence of failure (COF). LOF variables are related to the chance that a pipe could fail, and include: pipe age, material, operating conditions and soil conditions, among other things. COF variables may include the pipe size, its location, environmental and social consequences of a rupture, interruption to service and tarnished public reputations.

Low risk assessment

For low risk force mains, screening and desktop evaluations such as hydraulic analysis and pressure management within the system are often enough to manage the assets. As risk goes up, however, utilities should look at higher resolution technologies that offer more confidence for higher predictability.

Medium resolution assessment

The SmartBall® Pipe Wall Assessment (PWA) tool is Pure’s best technology for identifying leaks, gas pockets and wall stress locations in metallic sewer force mains. PWA technology looks at pipeline walls affected by loading and bedding conditions, as well as other factors that cause stress on the pipe, including structural damage caused by internal or external corrosion. As the free-swimming SmartBall tool rolls through the pipeline, it collects both acoustic and electromagnetic (EM) data. The acoustic sensor is used to identify the sound of wastewater leaving the pipeline, or more often, the sound of trapped gas at the top of the pipeline. Trapped gas within a force main may lead to internal corrosion and eventual breakdown of the pipe wall which is the primary cause of force main failures. In addition to the acoustic data, the SmartBall platform also collects EM data to identify areas of the pipe wall that are under stress. Areas of the pipe wall with damage will be under more stress than areas with limited or no damage. Stress on the pipe wall can also be caused by other factors such as excessive loading and hard bedding surrounding the pipe. Recent developments in SmartBall technology now allow for the combination of leak and gas pocket surveys with PWA surveys in a single deployment, providing a complete screening tool for force mains. Based on initial surveys using the SmartBall PWA tool, areas where gas pockets overlap with stress anomalies represent the largest area of concern of force main owners, as it indicates a high likelihood of corrosion.

High resolution assessment

In force mains with a higher risk, utilities should also consider assessment with a higher resolution tool in addition to a pre-screening survey that detects anomalous changes. For lines that cannot be taken out of service, Pure can deploy the PipeDiver tool, which uses electromagnetic sensors to detect areas of damage along the pipeline. The inline inspection system is an innovative, free-swimming condition assessment platform specially designed for in-service inspection of pressure pipelines. Configured with PureEM™ sensor arrays, the tool can be used with precision to identify wire breaks in PCCP and broad areas of cylinder corrosion in metallic pipe.

No one solution for every pipe or pipeline

While there is no silver bullet for assessing every pipeline, if a utility has a strong understanding of the risk and operational conditions of different areas in their system, an appropriate and defensible inspection plan can be developed. This process allows force main owners to develop a sustainable long-term strategy for managing their critical force main assets.

Small leaks sink big ships – the same can be said for large-diameter pipes in utility networks. While large leaks or ruptures are seen as newsworthy stories accompanied by images of water flowing down the streets; smaller leaks can often be more devastating. Left undetected, they can add up over time, contributing significantly to Non-Revenue Water, and eventually, they too can lead to catastrophic pipeline failures.

Many utilities focus leak detection efforts on locating and repairing large leaks, with less priority being placed on identifying smaller ones. While repairing these large leaks is integral to preventing major failures that are expensive to the utility and disruptive to the surrounding environment; finding and repairing small leaks may present the best opportunity for long-term reduction of NRW loss.

Non-Revenue Water loss in the United States is estimated to be between 14 and 16 percent on average, while some systems are suspected to have revenue loss of up to 40 percent. In developing countries this number is much higher, with NRW loss as high as 65 percent in some areas.

The Benefits of Finding Small Leaks

Identifying and repairing small leaks early in their life may be the best course of action to address the problem of future water loss. Catching a leak while it is small prevents decades of sustained water loss that may not otherwise be detected. Over the years, unreported water loss could mean significant financial loss for the utility. Additionally, utilities that fail to proactively find and fix unreported water main leaks allow a growing backlog of new leaks to occur slowly over time. The result is mounting water loss volumes and “hot spots” in some locations; as a number of small leaks can ultimately lead to a major pipeline failure.

Acoustic leak detection sensors have been developed to run through in-service water trunk mains, bringing the sensor to the leak sound, rather than relying on the leak sound to find the sensor. Inline surveys work exceptionally well on large-diameter water transmission trunk mains, which are often poor at transmitting leak sounds and have limited access points to the pipe.

Inline Leak Detection Case Studies

Inline leak detection services have been proven to reliably identify very small leaks on water trunk mains with pinpoint precision, without requiring the water main to be taken out of service.

Engineering staff from Metropolitana Milanese in Milan were able to reduce their water loss and renew the condition of one of their critical mains by conducting proactive inline leak detection using Pure Technologies’ SmartBall® inline leak detection tool. They found a concentration of eight small leaks in a 240 meter section of pipe, exposing a weak area of pipe that could eventually lead to a critical failure. Metropolitana Milanese was then able to take proactive measures to defend against major ruptures.

SmartBall with case and insertion tools

The SmartBall tool is a free swimming leak detection technology that follows the product flow of the pipeline, picking up acoustic anomalies that identify and locate very small leaks and gas pockets. Because it has very little operational noise, the sizes of the detected leaks are minute. In optimal operational conditions leaks as small as 0.028 gal/min have been detected.

With the ability to detect even smaller leaks at 0.005 gal/min (in optimal conditions), Pure Technologies’ Sahara leak detection platform is another tool that can be deployed. Because it is a tethered system that is operator controlled, it is also able to map the location of the leak within 0.5 meters (3 feet). The Sahara tool simultaneously provides real-time visual inspection of live pipeline conditions thanks to an inline video system that travels along the pipe with the acoustic sensor.

Carried out regularly, comprehensive leak detection programs can not only identify large, potentially catastrophic leaks, but also smaller leaks that over time contribute to NRW and eventually become damaging themselves.

Across the United States, there are many thousands of water and wastewater utilities that serve populations less than 50,000. Although the majority of attention surrounding aging infrastructure focuses on the challenges of large utilities, these small utilities are often faced with greater challenges.

Smaller utilities often have fewer resources – both financial and personnel – devoted to managing their water and wastewater systems. At times, this can lead to the utility having  less information available about their system, such as pipe drawings, break and leak history and condition data.

Coupled with having fewer resources, small utilities often have primary mains that are non-redundant and represent the sole source of supply or collection for the population, making a leak, rupture or shutdown of any kind very disruptive.

The City of Tarpon Springs, FL serves a population slightly less than 25,000. With limited resources and a mandate to provide both reliable water supply and wastewater collection for its customers, the City decided to assess the condition of one of its primary 14-inch force mains that experienced a failure in summer 2013.

The Dixie Highway Force Main is made of 14-inch ductile iron pipe (DIP) and poly-vinyl chloride (PVC) pipe, which was installed after the failure. In summer 2014, the City decided to complete condition assessment on nearly 1 mile of the force main to identify specific areas of concern before investigating further replacement.

Since internal hydrogen sulfide corrosion is the primary cause of DIP force main failure – and was the cause in 2013 – an inline survey was completed to collect relevant condition data.

For the inspection, the City used the SmartBall® tool, which can locate leaks, gas pockets and pipe wall stress in metallic pipelines. Leaks or failures on wastewater pipelines can have a devastating effect on the environment and can lead to litigation and consent decrees. In addition, gas pockets in force mains are of significant concern as hydrogen sulfide gas within the wastewater can be converted to sulfuric acid by bacteria in the slime layer on the pipe wall, which may cause corrosion and eventual breakdown of the pipe’s exposed surface.

Leaking Pipe

The SmartBall PWA tool is removed after the 1-mile inspection.

Sahara Insertion

Staff at Tarpon Springs Water were onsite during the inspection.

While inline leak and gas pocket assessment is a well-developed approach for force main operators, the development of pipe wall assessment (PWA) technology provides a more comprehensive level of condition information – areas of the pipe wall with damage will be under more stress than areas with limited or no damage.

By identifying stress anomalies, it provides operators with a detailed report of areas that warrant a more detailed assessment or testing.

The SmartBall assessment identified no leaks and nine gas pockets along the force main. Three of the gas pockets are located along the PVC section of pipe, indicating that gas pockets re-emerged in the PVC section of pipe in less than a year after replacement. It was recommended that air release valves be installed along the force main to clear gas pockets.

In addition, the PWA survey identified six areas that indicated stress within the pipe wall. One of the stress anomalies corresponds with a transition from buried pipe to exposed pipe, and therefore is caused by the change in load. The remaining five PWA anomalies do not correspond to any known features and could represent pipe degradation. The City during the insertion of the air release valves will be performing some field validation of these pipes.

By assessing the entire force main in advance of replacement, the City of Tarpon Springs is now able to make more informed decisions about its critical asset while avoiding the costly and mostly unnecessary strategy of replacement of the entire force main length. This mentality is an excellent example for other small utilities that are looking for ways to manage aging critical infrastructure, since replacing assets is very expensive within limited capital budgets.

Learn More

SmartBall Pipe Wall Assessment

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Frankfort Electric and Water Plant Board Verifies Distress on Ductile Iron Pipe Using Electromagnetics

In June 2013, FEWPB agreed to utilize an electromagnetic (EM) assessment technology on 700 feet of 1974 era DIP after the successful assessment of almost five miles of its prestressed concrete cylinder pipe (PCCP). The 700-foot section of 48-inch DIP runs directly from one of FEWPB’s water treatment plants and connects with the primary transmission main.

Ductile Iron Pipe

Ductile Iron Pipe (DIP)

Introduced into the U.S. marketplace in 1955, ductile iron pipe (DIP) is pressure pipe commonly used for potable water and sewage distribution. The predominant wall material is ductile iron, a spheroidized graphite cast iron, although an internal cement mortar lining usually serves to inhibit corrosion from the fluid being distributed, and various types of external coating are used to inhibit corrosion from the environment.

Abstract

Comprehensive condition assessment of wastewater force mains provides significant challenges to owners/operators of collection systems as the ability to shut down or expose the pipeline for a thorough inspection is often impractical due to operational and/or financial considerations. Traditional gravity sewer inspection techniques (i.e. visual-based technologies) do not always transfer easily to their wastewater pressure pipe counterparts and visual assessments do not provide the structural condition of force mains – something that is critical in determining the true pipe condition. Therefore, a different set of inspection tools and assessment techniques is required for force mains.

The most effective strategy to safely manage a force main inventory is to implement a risk-based approach for any data collection, inspection, condition assessment, and management techniques. Using asset risk to guide the management strategies, an owner/operator can ensure they are implementing the right approach, at the right time, with the lowest financial impact. While recent advances in force main inspection technologies, assessment techniques, and repair/rehabilitation methods now allow for substantial extension of existing asset service life, a risk-based approach to their implementation will ensure resources are focused on the correct pipelines. The goal should always be to focus the proper resources in managing the asset while safely getting the most service life out of the force main.

Authors

  • Travis B. Wagner, Pure Technologies Ltd., Columbia, MD, USA
  • Jennifer Steffens, Pure Technologies Ltd., Atlanta, GA, USA

Abstract

Since the late 1990s there have been numerous inspection and monitoring projects focused on identifying and quantifying wire break damage in PCCP water and wastewater pressure mains. The pressing need to identify and manage deterioration of PCCP has resulted in the rapid development of a small but highly focused niche industry of condition assessment of PCCP mains. During this time, there have been various theories and postulations regarding the performance and deterioration of PCCP mains. This paper statistically reviews data from more than 500 miles of electromagnetic inspection and acoustic monitoring that have been performed since 2001 to develop scientifically based conclusions on a variety of topic areas regarding the performance and deterioration of PCCP mains. Topic areas include:

  • The mean for percent of damaged pipe sections (percent of damage) are reported. The industry has many views on the performance of PCCP. This paper reports the percent of damage by reviewing the total number of PCCP sections inspected and those that were reported as having wire break damage.
  • The percent of damage is further evaluated by the year of manufacture binned according to the various AWWA C301 and C304 versions. This includes an analysis of what is the mean percent of damage for pipe manufactured with Class IV prestressing wire.
  • Percent of damage is also compared between embedded cylinder or lined cylinder pipe to determine if one type of design has an improved performance.
  • Percent of damage is also compared for water (including raw water) vs. wastewater mains

Authors

  • Michael S. Higgins, P.E., Pure Technologies, Columbia, MD, USA.
  • Allison Stroebele, P.Eng., Pure Technologies, Columbia, MD, USA.
  • Sana Zahidi, Pure Technologies, Columbia, MD, USA.

Abstract

Bar-wrapped pipe (“BWP”) is commonly used in pressure pipelines due to its reliability, cost effectiveness and durability. Failure of BWP can occur as a result of long term leakage and subsequent corrosion or as a result of leakage and deterioration of the reinforcing bars over time. The failure can also be the direct result of a transient pressure or other sudden catastrophic events.

The consequence of failure may result in a significant disruption of operation and service for a water utility without any warning. This is a concern because assessing the condition of a damaged BWP is very challenging. In this paper, a nonlinear finite element analysis was used to evaluate the performance of a damaged BWP.

For the structural evaluation, stresses and strains developed in the damaged BWP were evaluated. Cracking and spalling of the mortar lining will eventually lead to the corrosion of the steel components. In an effort to account for the steel deterioration, the model was adjusted by reducing the thickness of the steel cylinder. This study investigates the behavior of a deteriorating BWP under various levels of distress and various internal pressures. The results based on a 24-inch pipe transmission main, are used to define criteria to evaluate the performance of a damaged BWP. Based upon the finite element results obtained in this study, suggestions for future work are presented and discussed.

Authors

  • Ali Alavinasab, Pure Technologies, Branchburg, NJ, USA.
  • Muthu Chandrasekaran, Pure Technologies, Columbia, MD, USA.
  • Edward Padewski III, Pure Technologies, Branchburg, NJ, USA.

For water service providers in Texas, providing customers with consistent, reliable access to water is crucial, particularly in the summer months when dry conditions impact the water supply.

In order to ensure that residents receive consistent water supply, the City of Irving and a partnering agency have collaborated in times of need to supply the other with water.

In one specific instance, the City of Irving was able to keep customers of the partnering agency supplied with water from one of its 48-inch transmission mains. The combined effort between the utilities showed excellent organizational cooperation to achieve the most important goal for any utility – finding a way to provide consistent service.

In January 2014, the two agencies teamed up again, this time to assess the critical 48-inch Jamison Main that links the two utilities. The transmission main was constructed in 1955 and is made up primarily of Bar-Wrapped Concrete Cylinder Pipe (BWP). Since its construction, however, the main has had modifications: in 1965 and 1968 sections of Prestressed Concrete Cylinder Pipe (PCCP) were added to accommodate the construction of Texas Stadium, and in 2009, another section of PCCP was added during the reconstruction of Loop 12 Highway.

The Difference Between PCCP and BWP

While BWP and PCCP look similar in cross-section, the pipe materials deteriorate in different ways and therefore are assessed differently.

For BWP, it is important for operators to identify and locate corrosion on the steel cylinder, since it is the main structural component and the bars are made with mild steel and are wrapped under less tension than PCCP; BWP essentially behaves like a mortar-lined and coated steel pipe.

PCCP is a concrete pipe that remains under compression because of the prestressing wires, with the thin-gauge steel cylinder acting as a water barrier. The high strength steel wire in PCCP is smaller in diameter and wrapped under higher tension, therefore corrosion makes it quite vulnerable to breakage.

Electromagnetic inspection tool

Electromagnetic inspection tool

Robotic tool insertion

Pure Technologies staff insert the robotic tool for assessment

As the prestressing wires in PCCP begin to break, the pipe becomes weaker and is more likely to fail catastrophically. It is important to locate and quantify the amount of broken wires in PCCP as they are the main structural component.

Because of the differences, the two materials are assessed using electromagnetic (EM) technology that identifies different signs of deterioration in each pipe.

In BWP, inspections identify both the presence of broken bars – which could indicate corrosion on the cylinder – and broad areas of corrosion on the cylinder itself. This approach allows operators to renew pipe sections with an undesirable amount of corrosion that could lead to pipe failure.

In PCCP, EM technology locates and quantifies the amount of broken wires. This method is extremely effective in identifying pipe sections that are suitable for renewal once the number of wire breaks passes a certain limit.

The Condition Assessment Program

For the Jamison Water Transmission Main assessment, the SmartBall® leak detection and PureRobotics® platforms were used to identify deterioration on both the primary pipe material, BWP, and the added sections of PCCP.

Completing a leak detection survey is an important aspect of a condition assessment project, since leaks are often a preliminary indication of a potential failure location. Pre-screening is particularly important in in BWP, since the steel cylinder is the main structural component and the pipe behaves similarly to a mortar-lined and coated steel pipe.

The leak detection survey identified one acoustic anomaly associated with a leak in 2.7 miles of inspection. The screening of the pipeline helps determine the baseline condition of the asset.

The PureRobotics platform was used for the structural assessment portion of the project. The tool is equipped with PureEM™ technology, which can identify distress on both pipe BWP and PCCP, but also features CCTV and above-ground tracking. By completing a structural assessment, damaged areas of the pipe can be targeted for selective renewal.

The Condition Assessment Program

In addition to gaining a valuable baseline condition of the transmission main, the assessment provided both utilities with more information about the location of additions to the critical transmission main.

The CCTV and line-locating feature were used to identify the exact location of two unknown manholes, which in turn were used as additional tracking locations. With more tracking locations during inline inspection, areas of distress can be more accurately located. The CCTV inspection also identified the location of a 48-inch gate valve and 90-degree bends.

Another challenge surrounding this main was accurate mapping of the sections that were added on after the original construction. Additions or alterations to existing pipelines can sometimes lead to inaccurate drawings. By tracking the tethered robotics tool above the ground using a manned sensor, Irving and its partnering agency were able to map out the relocated portions of the pipeline. This provides valuable information for future maintenance, assessment and renewal programs.

Through close collaboration, these two service providers were able to effectively manage a shared asset with the goal of preventing disruptive and expensive pipe failures. The information gained from the structural assessment will allow for the implementation of a cost-effective long-term pipeline management plan and effectively defer the replacement of the pipeline for the foreseeable future.

 

Learn More

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemented for only a fraction of the capital replacement cost.

Case Study

Case Study: Trinity River Authority of Texas

After completing leak detection and structural condition assessment on 8.5 miles of PCCP and Bar-Wrapped Pipe, Trinity River Authority verified the results of inspection, finding three distressed pipe sections.

Technical Paper

Failure Risk of Bar-Wrapped Pipe with Broken Bars and Corroded Cylinder

This study investigates the behavior of a deteriorating BWP under various levels of distress and various internal pressures. The results based on a 24-inch pipe transmission main, are used to define criteria to evaluate the performance of a damaged BWP. Based upon the finite element results obtained in this study, suggestions for future work are presented and discussed.

To proactively address its large-diameter Prestressed Concrete Cylinder Pipe (PCCP) for deterioration, Tampa Bay Water (TBW) completed a leak and gas pocket survey and electromagnetic (EM) condition assessment of the South-Central Hillsborough Regional Wellfield Transmission Main in April 2013. The results of the assessment were verified in 2014 to determine the remaining useful life of the pipeline, which is responsible for delivering 10 percent of TBW’s 24 million gallons of raw water per day.

Based on the EM inspection, only 0.5 percent (11 of 2,177) of pipe sections contained varying levels of distress; subsequent structural and finite element analysis determined that only a fraction of the distressed pipes warranted further consideration. In addition to the structural assessment, the leak and gas pocket survey identified only one small leak.

The results show the critical transmission main is in excellent condition and can be safely managed despite being nearly 30-years-old. Some PCCP users throughout the United States have experienced major failures as their assets approach 40 years of operation.

TBW maintains a large pipeline network that serves the Tampa Bay and St. Petersburg metropolitan area and includes approximately 80 miles of PCCP. The pipeline inspections were completed on 8 miles of 42-, 48- and 54-inch PCCP that convey wellfield supply to the Lithia Water Treatment Facility.

For the leak and gas pocket survey, SmartBall® technology was used as a forerunner for the EM condition assessment and provided TBW with an initial condition of the pipeline.

Early identification and repair of leaks can reduce Non-Revenue Water (NRW), but also helps determine the baseline condition of a pipeline, since leaks can be an indication that a pipeline might fail. In addition, locating and eliminating gas pockets reduces pressure on the pumps that are attempting to push water past a pocket. As pockets grow in size, they can significantly affect the flow of water and capacity of the pipeline if not released.

After the prescreening survey, TBW completed an EM inspection using PipeDiver®, a free-flowing EM tool that is able to accurately locate and quantify broken wire wraps in PCCP. The wire wraps in PCCP act as the main structural component; broken wraps are the main indication that this type of pipe will eventually fail.

TBW’s asset management program allowed them to prioritize and take the first steps in determining the remaining useful life of a critical asset. This will lead to more informed decision-making for the future management of this main through reinspection, monitoring or renewal.

 

Learn More

Technical Paper

Beyond the Wires: A Sustainable Approach to Prestressed Concrete Cylinder Pipe Management

While evaluating wire breaks are an important part of PCCP management, it is important to acknowledge additional factors beyond wire breaks. By acknowledging additional condition factors, limitations of wire break assessment, and considering other rehabilitation approaches, there may be a more sustainable PCCP management approach (or combination of approaches).

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemented for only a fraction of the capital replacement cost.

Free-Swimming Pipeline Inspection

PipeDiver® – Free-Swimming Pipeline Inspection

Specifically designed for structural assessment of Prestressed Concrete Cylinder Pipe (PCCP) lines that are live or can’t be taken out of service due to a lack of redundancy or operational constraints.

To protect a thriving economy, Californian water utilities require a reliable and predictable supply of clean water; any water lost through leaks not only threatens the ability to provide adequate service, but also represents the waste of a scarce resource.

In order to ensure reliable service delivery and reduce Non-Revenue Water (NRW) – which can be defined as water that is produced for consumption and lost before it reaches the customer – two Californian utilities completed leak detection surveys on their critical water transmission mains in December 2013, while a third utility assessed a force main with a suspected leak.

While reducing NRW can be challenging, one of the most effective methods in reduction is having a well-developed leak detection program for both small- and large-diameter water mains. For large-diameter pipes, the most effective method of identifying leaks is through the use of inline leak detection. This method brings the leak detection sensor directly to the source of the leak, which provides the highest level of accuracy.

Accurately locating and repairing leaks on large-diameter mains is the best way to reduce NRW through leak detection, as almost 50 percent of the water lost through leaks is through large-diameter assets. Identifying leaks also increases service reliability and reduces the likelihood of a pipeline failure, as the presence of leaks is often a preliminary indication of a failure location.

In December 2013, the Los Angeles Department of Water and Power (LADWP) completed an inline leak detection survey on 8 miles of the 45-mile Second Los Angeles Aqueduct, which is made of 76-inch mortar-lined steel.

Identifying leaks on metallic pipe materials is particularly important for water utilities, since leakage is a main indicator that metallic pipes will eventually fail. LADWP’s inspection using SmartBall® leak detection confirmed that this section of the aqueduct is leak-free.

Although addressing NRW is a major priority for utilities, operators of wastewater force mains should also be concerned with leakage. Leaks or failures on wastewater pipelines can have a devastating effect on the environment and can lead to litigation and consent decrees. In addition, gas pockets in force mains are of significant concern as hydrogen sulfide gas within the wastewater can be converted to sulfuric acid by bacteria in the slime layer on the pipe wall, which may cause corrosion and eventual breakdown of the pipe’s exposed surface.

In order to conduct a leak and gas pocket screen on an 18-inch force main, the Vallejo Sanitation and Flood Control District completed a 1.3-mile survey using SmartBall technology. The inspection identified three acoustic anomalies that were associated with pockets of trapped gas.

Through the inline assessment of this force main, the District was able to identify areas of potential concern, which will focus resources and guide future investigations.

Pipeline leak detection systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming inline leak detection technology designed to operate in a live water mains.

Cobb County-Marietta Water Authority (CCMWA) is the second largest drinking water supplier in Georgia, providing vital service to nearly 800,000 people through twelve wholesale customers. With two award-winning water treatment plants and over 200 miles of large-diameter transmission mains, CCMWA can deliver up to 158 million gallons per day. Two of CCMWA’s key objectives are to be financially viable and to reduce vulnerabilities by improving redundancy and implementing a comprehensive asset management program.

However, across the United States critical infrastructure is aging, causing utilities to see an increased number of water pipe failures. While these failures occur most commonly on small pipes – causing only minor disruptions – large-diameter mains do fail, resulting in major delays and enormous repair bills.

A large portion of CCMWA’s large-diameter pipeline inventory is made up of Prestressed Concrete Cylinder Pipe (PCCP). In order to successfully manage PCCP, the water industry has widely adopted the use of condition assessment techniques, which have a proven track record of identifying and averting PCCP failures. PCCP owners and operators continue to use these condition assessment methodologies combined with sound engineering analysis to effectively and safely manage their critical assets.

Cobb County’s Program

In 2012, CCMWA was in a similar situation to many predominant PCCP users; past failures on these critical assets had led to the decision to replace the majority of PCCP assets to avoid the risk of future failures. However, it was determined that replacing large sections of pipeline was not financially or logistically feasible.

Large-scale replacement programs are also unnecessary based on industry research, which confirms that pipe deterioration is not uniform or systematic. Specifically, electromagnetic inspection data (which identifies both the quantity and location of broken prestressing wires – the primary structural component of PCCP) collected by Pure Technologies over more than a decade indicates that less than 4 percent of pipe sections inspected have any level of wire break damage and less than 1 percent require repair – regardless of when it was manufactured.

SmartBall tool extraction

The SmartBall tool is retrieved from the extraction point.

PipeDiver retrieval

Staff remove the PipeDiver tool after the non-destructive assessment.

Therefore, by making the decision to replace entire alignments of PCCP, owners typically remove a majority of pipeline assets that are in like-new condition. A financial evaluation based on the cost of capital replacements compared with PCCP management (inspection, repair, re-inspection, and repairs) for the 48-inch diameter PCCP in CCMWA’s inventory indicates that the pipelines can be managed for approximately 10 percent of the capital replacement costs when extended over 25 years using a net present value calculation (Figure 1).

Capital Replacement vs Condition Assessment

Figure 1: Financial Evaluation of Capital Replacement vs Condition Assessment

Following a repair on a 30- and 42-inch Raw Water Line in 2012, CCMWA decided to manage its critical PCCP assets using condition assessment and engineering analysis as a proactive management strategy. In 2013, CCMWA completed its first full inline condition assessment to identify structural deterioration on its PCCP. The project focused on the 30- and 42-inch main that had previously been found to have defective joints and a deteriorating pipe wall to determine its remaining useful life.

The Inspection Program

The assessment featured two inspections – a leak and gas pocket survey and inline electromagnetic (EM) inspection – on roughly four miles of the 30- and 42-inch PCCP Raw Water Line. The subject pipeline acts as a redundant supply line from Lake Acworth to the Wyckoff Water Treatment Plant. The project also included engineering evaluations including structural analysis and remaining useful life evaluations to make management and renewal recommendations. For the prescreening survey, CCMWA used SmartBall® leak detection, a free-flowing tool that identifies the acoustic anomalies associated with leaks and gas pockets in large-diameter pipelines. Completing a prescreening leak and gas pocket survey is a prudent approach for operators of any pipe material, since leaks are often a preliminary indication of a failure location. For PCCP, leaks are usually located near the pipe joint, which is also a common failure area on PCCP. However, the inspection did not identify any leaks or pockets of trapped gas. For the more detailed structural evaluation, the PipeDiver® electromagnetic (EM) inspection platform was used. The tool uses electromagnetics to identify broken prestressing wires, which are the primary structural component in PCCP. As sections of PCCP begin to deteriorate, the prestressing wires begin to break, which weakens the pipe and makes it more likely to fail. Identifying broken wires is the most effective way of determining the condition of and preventing failures in PCCP. By completing an EM inspection on the PipeDiver platform, CCMWA was able to determine the baseline condition of the pipeline while it remained in service – a major benefit for operators who cannot remove mains from service to complete internal inspection.

The Results

For CCMWA, the inspection identified ten pipe segments amounting to less than 1 percent of the pipeline with evidence of broken prestressing wire wraps. On average, PCCP inspections across the country indicate that approximately 4 percent of the pipe segments have any level of damage. This confirms that the majority of CCMWA’s PCCP inventory is in good condition, with only a small number of pipe sections in need of immediate renewal. However, locating and renewing even one pipe section can help utilities maintain reliable service and avoid an expensive pipe failure. Beyond the prescreening and structural inspections, CCMWA was able to identify limitations in its potable water system through the planning portion of the project. The inspected pipeline is a redundant line which carries raw water to the Wyckoff Treatment Plant; the primary supply line to the plant is a 60-inch line. In order to ensure that the main was being operated safely within its limits, a hydraulic study was completed. This study found that the 30-inch section of the pipeline was incapable of supplying the treatment plant’s required operating flow rate while maintaining a safe operating pressure within the system. Operating the pipeline under the required pressures places the main at a higher risk of failure in the event that the primary raw water line is taken out of service. Based on the study, it was recommended that the approximately 1 mile of 30-inch PCCP be replaced to handle existing and future operating condition requirements of the treatment plant. This discovery allowed CCMWA to make defensible decisions about their 30-inch PCCP main and pumping station while contributing to the prevention of future pipe failures. By upgrading the 30-inch section of the pipeline, the raw water pipeline will remain a safe redundancy line for the main 60-inch line. By managing its PCCP assets using condition assessment, it has also been determined that less than 1 percent of pipe sections on the assessed main have any indication of wire break damage, which is consistent with industry standards. Additionally, the prescreening survey showed that there are no leaks or gas pockets that require maintenance. The results from the inspections will allow CCMWA to cost-effectively manage its PCCP assets in favor of completing a large-scale replacement.

 

Learn More

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemented for only a fraction of the capital replacement cost.

Pipeline leak detection systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Free-Swimming Pipeline Inspection

PipeDiver® – Free-Swimming Pipeline Inspection

Specifically designed for structural assessment of Prestressed Concrete Cylinder Pipe (PCCP) lines that are live or can’t be taken out of service due to a lack of redundancy or operational constraints.

Ecuador coast picture

Providing reliable access to clean water is a challenge faced by many Ecuadorian utilities; pipeline ruptures, leaks and unplanned shutdowns are not only inconvenient, but also represent the loss of a critical resource. Beyond the challenge of providing clean water, utilities are also tasked with finding a reliable method to assess critical water pipelines for structural damage.

Unlike oil and gas pipelines – which are typically designed to allow for inspection – critical water transmission mains are often hard to access. Many water mains also lack redundancy, meaning they cannot be shut down for proper inspection.

The Scope of Interagua’s Program

In a comprehensive program starting in 2011, the authority of Guayaquil (operated by Interagua Ltd.) addressed the challenges surrounding their water service delivery by assessing their critical transmission mains. The proactive condition assessment program identified defects on Interagua’s large-diameter Steel and Prestressed Concrete Cylinder Pipe (PCCP) transmission mains through the use of advanced inline inspection.

Specifically, the project included the prescreening of all pipelines using inline leak detection, structural condition assessment on PCCP pipelines using electromagnetic (EM) technology and internal close-circuit television (CCTV) and broadband electromagnetic assessment of steel pipelines. Through the program, Interagua ensured service reliability in the long run but also helped advance the technology available for assessing in-service steel pipelines.

Although ensuring service reliability was the primary reason Interagua began the program, there were several other factors that contributed to the need for assessment. In terms of external factors, the critical pipelines were set in aggressive soil, which threatened to deteriorate their condition. The pipelines are also under a variety of loads and operating pressures due to the growth of the city; this adds additional strain and can lead to structural damage.

Operationally, the pipelines have no redundancy and cannot be shut down for scheduled preventative maintenance. This made the pipelines high-risk because any disruption would interrupt service indefinitely. Also, because there is no redundancy, the pipelines had been in service for several years without interruption; finding a reliable inspection method for in-service pipelines was crucial for Interagua.

Broadband Electromagnetic inspection

Interagua and Pure completed Broadband Electromagnetic inspection on 5 kilometers of steel pipeline.

Staff prepare to insert the PipeDiver® tool

Staff prepare to insert the PipeDiver® tool to identify deterioration in Interagua’s PCCP.

Prescreening Using Inline Leak Detection

To begin assessing their critical pipelines, Interagua and Pure Technologies partnered in 2011. The scope of the project covered Interagua’s most critical pipelines that run through the north of the city. These mains are made of both steel and Prestressed Concrete Cylinder Pipe (PCCP) in diameters of 2000-mm, 1800-mm, 1500-mm, 1250-mm and 1050-mm. Considering that the 2000-mm steel main is only 20 years old and has a cathodic protection, the project focused on the other pipe diameters.

In total, roughly 66 kilometers of pipeline was surveyed for leaks and air pockets, and a significant portion of this was also assessed for structural deterioration. The main objective of inspecting the pipelines was to identify the actual condition of the pipes, including the specific amount and location of distress. From the results, a rehabilitation, replacement and maintenance plan could be created to ensure long-term service reliability. The inspections also provided Interagua with actionable information about pipe condition that could not be attained through conventional engineering studies.

In order to locate leaks and air pockets on all 66 kilometers of the transmission mains, Interagua used SmartBall® technology, an acoustic free-flowing leak detection tool that operates while a pipeline remains in service. The primary goal of the survey was to identify critical leaks that could be prioritized for repair by Interagua.

Locating and repairing leaks helps to reduce non-revenue water (NRW) and preserve a scarce resource. However, repairing leaks early also increases pipeline reliability, since leaks are often a preliminary indication of a failure location, particularly in metallic pipe materials. Failures in metallic pipe are often preceded by a period of leakage, so identification of leaks on metallic pipelines has the added benefit of ensuring structural reliability and preventing costly pipe failures.

Through the use of inline leak detection, Interagua identified 44 total leaks and four air pockets in the 66 kilometers of inspection. Of these leaks, 16 were identified as small, 17 as medium-sized and 11 as large leaks. Of the identified leaks, 14 were located on the 1250-mm sections of steel pipe.

Identifying Structural Deterioration through Condition Assessment

To identify structural deterioration on its PCCP mains, Interagua used the PipeDiver® platform, a free-flowing electromagnetic (EM) condition assessment tool. The tool finds structural defects by identifying and locating wire breaks in PCCP; the presence of broken wires is the main indication that PCCP will eventually fail.

The tool is able to effectively determine the baseline condition of PCCP while the pipeline remains in service. The ability to inspect live pipelines was a major factor for Interagua, as many of their critical PCCP mains could not be taken out of service for maintenance or inspection.
In total, Interagua completed almost 10 kilometers of EM inspection on its 1500-mm and 1800-mm PCCP mains that run north of the city. The inspection identified 90 pipe sections with some level of distress out of a possible 1429 pipe sections; after thorough engineering analysis, it was determined that only nine pipe sections should be replaced.

Through the use of EM condition assessment, Interagua was able to determine that only 6 percent of its PCCP inventory had distress, while less than one percent required immediate action. This approach saved a huge amount of capital budget by avoiding unnecessary replacement and also restored pipeline reliability.

For its 1250-mm steel pipeline inventory, Intergua also completed robotic CCTV inspection and Broadband Electromagnetic (BEM) inspection to identify areas of concern. Inline CCTV provides information about internal pipe conditions, while BEM technology can determine the remaining wall thickness of steel pipe through outer coatings of up to 50-mm.

In total, 21 kilometers of steel pipe was assessed, including 5 kilometers of BEM inspection. The results showed that Interagua’s steel pipe inventory was in good overall condition and had sufficient remaining wall thickness. Through the use of inline leak detection, CCTV and BEM inspection, Interagua identified the baseline condition of its critical steel pipes, which helped in the development of a future maintenance and repair plan.

The Results

Interagua’s large-diameter pipeline management program was very successful and determined that the vast majority of its large-diameter assets did not need to be replaced. The approach of assessing the pipelines to locate specific, isolated problems prevented the costly replacement of pipe with significant remaining useful life.

In addition to successful results, the project has been instrumental in the development of a reliable condition assessment method for mortar-lined steel pipelines; based on the initial results, Interagua will continue to assess its steel pipelines using the most advanced condition assessment technologies available, including free-flowing condition assessment of steel pipelines, which was unavailable at the inception of the project.

By investing capital resources into a condition assessment program, Interagua has successfully extended the useful life of its system and restored asset value by repairing isolated pipe sections and determining that the majority of pipelines have no distress and have significant remaining useful life.

Learn More

Cast Iron Pipes

Managing Metallic Pipelines

Pure offers a number of leading edge technology options for assessing the condition of ferrous water and wastewater mains.

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemented for only a fraction of the capital replacement cost.

Pipeline Inspection and Condition Assessment Services

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

In Pinellas County – Florida’s most densely populated county – residents and government work together to conserve water. A major component of this water reclamation process is the South Cross Bayou Water Reclamation Facility, which is designed for an average flow of 33 MGD. After a failure in June 2013 on a 42-inch ductile iron pipe in the reclamation facility, the Pinellas County Department of Environmental and Infrastructure rehabilitated and replaced portions of the facility’s pipeline. In September 2013, the Division of Engineering and Technical Support suspected that a small leak (estimated at 19 gallons/hour) had developed on a section of pipeline, originally thought to be in good condition, which was not rehabilitated after the failure. In metallic pipe materials, pipe failure is often preceded by a period of leakage. After already having a significant failure and investing in rehabilitation on a significant amount of pipeline, the County was adamant about identifying the location of any further leaks, which were impacting normal facility operation. After unsuccessfully trying a number of different leak detection techniques, the County turned to inline leak detection to identify the leak on the 627-foot (191-meter) stretch of pipeline. However, one of the challenges was that the pipeline had no flow due to implemented bypass procedures. To locate the leak, the County and Pure Technologies (Pure) took an innovative approach by using a tethered SmartBall® tool.

The SmartBall tool is a free-flowing leak detection technology that identifies the acoustic anomalies associated with leaks and gas pockets. Typically, it travels with the product flow in live pipelines, however, in no-flow conditions it will not move.

To overcome this challenge, the County and Pure temporarily pressurized the pipeline, tethered the tool using a mule tape and winched it through the planned inspection distance 627-feet (191-meters). The County took this approach because the insertion point was in the middle of one of the facility treatment trains– meaning a compact tool was needed to meet the logistical difficulties.

During inspection, the tethered SmartBall tool collects data twice since it is winched back to its insertion point. For this inspection, two runs were completed to confirm the leak size and location accuracy for the County. Upon review of the data and during the actual inspection, a leak was determined to be on a sleeve at the invert near the inline magmeter, which was the downstream limit of our inspection. The area outside of the magmeter vault was difficult and expensive to expose. Therefore, the County filled the area with grout and placed the pipeline back into service.

 

Learn More

Pipeline leak detection systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming inline leak detection technology designed to operate in a live water mains.

TRA Verification
Leaks on small-diameter distribution pipelines are the most common leaks a utility encounters. However, locating and repairing leaks on large-diameter transmission pipelines is also important in maintaining safe and reliable service delivery. These leaks are often more sparse, and therefore more difficult to locate which can lead to prolonged leakage and extensive water loss.

Utilities that have a leak detection program in place for their large-diameter transmission mains often achieve greater reductions in Non-Revenue Water (NRW), which is the amount of water lost before it reaches the customer. Furthermore, a leak detection inspection is a valuable step as part of a condition assessment program. Utilities can avoid expensive capital replacement programs by gathering real data on the condition of their pipelines, and addressing problems as they arise.

Bloem Water, who provides water services to the central region of South Africa, recently implemented an asset condition assessment project that included a comprehensive leak detection program using inline methods on a strategic 1200-millimeter (48-inch) Prestressed Concrete Pipe (PCP) that supplies the City of Bloemfontein with roughly 60 percent of its drinking water.

Inline leak detection is the most accurate method of locating leaks because it brings the acoustic sensor directly to the leak source, unlike traditional methods, such as correlators and listening sticks. These techniques lack the accuracy needed to locate leaks in larger pipes because the sound of a leak dissipates rapidly in large-diameter pipes.

Both SmartBall® and Sahara® leak detection technologies were successfully applied for Bloem Water. The total inspection covered 103 kilometers between De Hoek Reservoir and Brandkop Reservoir and identified 30 leaks.

To maximize efficiency, the SmartBall tool was used first to cover large sections of the distance in single deployments. The tool is a free-swimming leak detection platform that operates while the pipeline remains in service. It is equipped with an acoustic sensor that identifies acoustic anomalies associated with leaks; the acoustic signature is then analyzed to determine if it is a leak, air pocket, or an external noise.

SmartBall tool before insertion

The SmartBall tool prior to insertion.

Staff during tool extraction

Staff retrieving the tool at the end of inspection.

To maximize efficiency, the SmartBall tool was used first to cover large sections of the distance in single deployments. The tool is a free-swimming leak detection platform that operates while the pipeline remains in service. It is equipped with an acoustic sensor that identifies acoustic anomalies associated with leaks; the acoustic signature is then analyzed to determine if it is a leak, air pocket, or an external noise.

The SmartBall inspections were followed by selective Sahara audio and visual surveys to provide visual confirmation on the location of the leaks in order to aid in the interpretation of findings and plan interventions. The Sahara tool is a tethered inline leak location and condition assessment technology that pinpoints the location of leaks while at the same time inspecting the internal condition of the pipeline and verifying the cause of leakage using a combined acoustic hydrophone with an integrated CCTV camera.

Visual leak verification was also performed at all accessible components along the pipeline.

The leaks were identified and classified as either pipeline leaks (i.e. on the pipe barrel itself), component leaks (i.e. at valves, air valves, scour valves, etc.) or off-take leaks. The majority of the leaks were found to be at components while pipeline leaks were detected mainly on joints (i.e. where the PCP was connected with prefabricated steel joint pieces). Some of the leaks on these joints may be attributed to poor bedding, improper VJ connections, among other things.

The estimated water loss based on indicative leak sizing categories amounts to approximately 1200 kiloliters per day. Interestingly, of the pipeline leaks detected, only three leaks showed any surface signs of leakage. This reiterates the importance of not relying on surface inspections as the only means of detecting large-diameter pipeline leaks.

The findings of the latest leak detection surveys were compared to that of a previous Sahara leak detection inspection project performed in 2007-2009 to establish trends. This information, combined with a first order engineering evaluation of available pipeline design and manufacturing data, the failure history of the pipeline, operating records and the hydraulic behavior of the system were incorporated into a risk assessment model for the pipeline.

The leak detection findings, engineering evaluation and risk assessment were factored into the development of a pipeline-specific management strategy. Bloem Water can now implement this strategy as a guideline to proactively manage this valuable asset in order to prolong its remaining useful life, avoiding expensive capital replacement of the asset.

Learn More

Pipeline leak detection systems

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming inline leak detection technology designed to operate in a live water mains.

Smartball- Leak and Gas Pocket Detention

PureNET™ – Integrated Non Revenue Water and Asset Management Software

In order to help utilities manage all aspects of their complex water and wastewater systems, PureNET™ allows utilities to manage their infrastructure data more effectively.

Non-Revenue Water (NRW)

Non-Revenue Water (NRW)

Each day, billions of gallons of water are lost worldwide. Not only does this represent the loss of a precious resource that not everyone has access to; it represents a massive amount of lost revenue for the utilities that provide it.

Roughly US$14 billion in clean, non-revenue water is lost every year due to leaks and water main failures that could have been prevented.

If the loss of non-revenue water could be cut by half, an estimated US$2.9 billion could be generated and an additional 90 million people could have access to water.

Locating leaks on transmission mains represents the best opportunity for improvement.

Non-revenue water is defined as water that is produced for consumption but is lost before it reaches the customer. These losses are divided into three categories:

  • Physical (or real) losses due to poor operation and maintenance, lack of an active leak control system or the poor quality of underground assets.
  • Commercial (or apparent losses) include customer meter under-registration, data handling error or the theft of water in various forms such as illegal connections.
  • Unbilled authorized consumption includes water used for operational purposes, for fighting fires and water that is provided for free to certain consumer groups.

The best opportunity for improving this situation is by taking the first step in a NRW-reduction strategy and start focusing on leak and theft detection within transmission mains.

That’s where Pure comes in.

With over 2,000 miles of large-diameter pipelines inspected, Pure Technologies has located more than 4,000 leaks for an average of 2.2 leaks per mile using our advanced inline leak detection technologies significantly reducing NRW while saving millions of gallons of water and helping prevent failures for utilities around the world.

Fast forward to 2012, and the Birmingham Water Works Board (BWWB) had the challenge of maintaining a critical pipeline that was constructed well before the board was even established in 1950.

In order to determine the baseline condition of nearly 8 miles of the RCP transmission main and proactively address Non-Revenue Water (NRW) loss, BWWB completed four inspections using SmartBall® technology, a free-flowing leak detection platform that operates while the pipeline remains in service.

The inspections using inline leak detection were very successful, locating 26 leaks of varying size with close location accuracy. Twenty of the leaks have since been verified and repaired by BWWB, while the remaining six leaks have been deferred due to their size or matched up with existing features.

In the August 2013 issue of Trenchless Technology, BWWB’s project was featured as an example of how utilities can manage their aging pipeline infrastructure through the use of advanced leak detection technology.

Read Full Article»

 

Learn More

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming inline leak detection technology designed to operate in a live water mains.

Case Study: Birmingham Water Works Board

In early 2012, the Birmingham Water Works Board (BWWB) ran a successful leak detection program on 7.7 miles (12 km) of 42-inch (1050-mm) Reinforced Concrete Pipe (RCP). The inspected pipelines are part of BWW’s system that transports water from the Shades Mountain Filter Plant to different areas of the city.

Bloomberg TV Story

Initially, owners and operators perceived that once a pipe was constructed and buried, inspecting pipelines was not necessary as long as they were in proper working order. But with the trend of urbanization and development, the risk of operating these pipelines became greater, as leaks or failures can significantly threaten communities and the environment.

The challenge of managing aging pipelines that were not built with the thought of inline inspection is daunting. To best mitigate risk, oil and gas operators should use a multi tool approach that incorporates both real-time and survey-based condition assessment technologies.

SmartBall® leak detection for oil and gas pipelines is an innovative tool that can effectively compliment integrity programs. The tool identifies acoustic anomalies associated with leaks which differ from anomalies created by other sounds and pipeline features. SmartBall technology is highly sensitive and can identify leaks that aren’t typically found using other systems.

 

Learn More

Pipeline Leak Detection Systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Technical Paper

Development of a Long Duration, Free Swimming, Inline Acoustic Leak Detection Inspection Tool

Acoustic leak detection inspection tools have become a common technique to identify minute pipeline leakage before the leak and the defect producing it can become a larger problem or even a rupture level event. While these inspection tools only identify small defects once they reach the through wall stage and result in leakage, they can be an effective means of demonstrating the pressure tightness of a pipeline and ruling out the presence of through wall defects that are below the detection threshold of other ILI inspection tools; in so doing finding a way into both the leak detection and pipeline integrity toolboxes.

hese distinctions can make assessing BWP challenging for pipeline operators attempting to renew their large-diameter water transmission mains, since the methods for determining baseline condition in the similar-looking pipe types are different.

PCCP is a concrete pipe that remains under compression because of the prestressing wires, with the thin-gauge steel cylinder acting as a water membrane. With BWP, the cylinder plays a much larger role in the structural integrity of the pipe. BWP is essentially designed as a steel pipe with mild steel used to manufacture the steel cylinder and steel bars.

The high strength steel wire in PCCP is smaller in diameter and wrapped under higher tension, therefore corrosion makes it quite vulnerable to breakage. The mild steel bars in BWP are thicker in diameter and wrapped under less tension, therefore corrosion takes significantly longer to lead to breakage.

This was the case for Trinity River Authority of Texas (TRA), who owns and operates 8.5 miles of 30-inch BWP and PCCP that supplies raw water from Lake Arlington to the Tarrant County Water Supply Project Water Treatment Plant in Euless, Texas.

The 30-inch pipeline, in conjunction with a parallel 54-inch pipeline, conveys raw water to TRA’s 87 mgd Water Treatment Plant (WTP). Treated water produced at the WTP is then supplied to five cities in the mid-cities region between Dallas and Fort Worth including Bedford, Colleyville, Euless, Grapevine and North Richland Hills.

TRA had originally planned to replace this pipeline, but chose to assess and selectively rehabilitate the pipeline by finding solutions that could identify the most distressed areas. The pipeline, constructed in 1973, is made up primarily of BWP, although there are some sections of PCCP.

In November 2012, TRA began a condition assessment program with Pure Technologies that included transient pressure monitoring, acoustic leak and gas pocket detection, internal electromagnetic inspection, and structural condition assessment including finite element analysis.

Pure Technologies staff verify the pipe condition

Pure Technologies staff verify the pipe condition

Crew verify and reveal corrosion on three pipe sections

Verification revealed corrosion on three pipe sections

After completing the inspections, TRA has verified and repaired three sections of BWP that were beyond the yield limit determined by BWP structural performance curves. During the verification, TRA and Pure determined that the distress areas identified in the structural assessment were accurate and the excavated pipe sections had bar breaks and corrosion.

The condition assessment project also identified four leaks and three gas pockets and although the four identified leaks were small (less than 2 gallons per minute), one was located in the front yard of a brand new church building and could have caused significant water damage had it not been repaired immediately by TRA. Water from this leak was visible at the surface 325 feet away from the actual leak location.

Through the use of condition assessment, TRA was able to selectively rehabilitate its assets for roughly 4 percent of the estimated $25 million replacement cost. The project has also allowed TRA to increase service reliability for customers in the region.

Learn More

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemented for only a fraction of the capital replacement cost.

Case Study

Case Study: Trinity River Authority of Texas

After completing leak detection and structural condition assessment on 8.5 miles of PCCP and Bar-Wrapped Pipe, Trinity River Authority verified the results of inspection, finding three distressed pipe sections.

Technical Paper

Failure Risk of Bar-Wrapped Pipe with Broken Bars and Corroded Cylinder

This study investigates the behavior of a deteriorating BWP under various levels of distress and various internal pressures. The results based on a 24-inch pipe transmission main, are used to define criteria to evaluate the performance of a damaged BWP. Based upon the finite element results obtained in this study, suggestions for future work are presented and discussed.

The inspections are part of AWU’s proactive condition assessment program that focuses on leak detection and structural condition assessment through the use of advanced non-destructive technologies.

Focusing leak detection efforts on large-diameter pipelines is an excellent method to reduce Non-Revenue Water (NRW) and gather baseline condition information. While leaks on small-diameter distribution mains are the most common, leaks on large-diameter transmission mains account for a significantly higher percentage of the total water lost; repairing even one leak on a transmission main can achieve a significant reduction in NRW.

Identifying air pockets reduces pressure on pumps that are attempting to pump water past an air pocket. As pockets grow in size, they can adversely affect the flow and capacity of a pipeline.

In addition a reducing water loss, early identification of leaks helps reduce pipeline ruptures, as leaks are often a preliminary sign that a pipeline may eventually fail due to pipeline corrosion or loss of bedding support due to soil erosion. By identifying leaks early on, AWU is effectively reducing NRW, reducing their risk of failure, and gathering valuable baseline condition information on its pipelines.

SmartBall Tracking
SmartBall Tool

The inspections completed in June 2013 were completed on two separate pipelines, the Ulrich 72-inch Prestressed Concrete Cylinder Pipe (PCCP) potable water transmission main and the Airport Road 24-inch C-303 Bar Wrapped Pipe (BWP) and Cast Iron potable water transmission main.

AWU used SmartBall® technology for both inspections. The SmartBall tool is a free-swimming inline leak detection platform that identifies the acoustic anomalies associated with leaks and air pockets that operates while the pipeline remains in service. The tool is tracked via fixed or portable receivers that are positioned strategically throughout the planned inspection distance. Following an inspection, the collected data is analyzed to determine if the acoustic anomalies represent leaks or air pockets and verified by AWU staff.

The Ulrich inspection covered a total of 6.6 miles in 6 hours and located no leaks or gas pockets. In order to successfully complete the inspection, AWU staff had to overcome one major operational constraint to ensure the tool could complete the inspection distance. Shortly after the insertion near the Ulrich WTP, the pipeline travelled beneath the Colorado River before making a 200-foot vertical climb, which can be difficult for free-flowing technologies without proper preparation. To overcome the challenge, AWU and Pure Technologies completed comprehensive flow simulations during the project planning phase to ensure the tool could traverse the vertical incline; this allowed the SmartBall tool to successfully travel up the steep hill.

In the Airport Road inspection, 2.4 miles of inspection was completed, successfully locating three leaks and giving AWU confidence that there are no air pockets restricting flow capacity in this line.

During both inspections, AWU and Pure Technologies worked closely to overcome operational challenges that allowed for successful leak detection surveys.

AWU supplies water to nearly 890,000 customers within and outside the corporate city limits of Austin, as well as the communities of Rollingwood, Sunset Valley, one water control and improvement district, five water supply corporations, seven municipal utility districts, and three private utilities. To ensure reliable service to its customers, AWU proactively addresses its infrastructure needs through regular inspection and rehabilitation to prevent service disruption and costly emergency repairs.

 

Learn More

Pipeline leak detection systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

In April 2012, the District signed a Federal Consent Decree requiring improvements to the collections system aimed to eliminate illegal discharges of untreated raw sewage. As part of the requirements outlined within Consent Decree, a force main non-destructive testing and condition assessment program must be developed and implemented. The force main condition assessment program incorporates an asset management approach and risk categorization scale that classifies each of its force mains as high, medium, or low risk based on a previously conducted prioritization. The District and Jason Consultants (a wholly owned subsidiary of Pure Technologies) have developed individualized assessment strategy for each high and medium risk force main including the implementation of various inspection techniques and technologies.

Condition assessment and management of wastewater force mains has historically proven difficult for pipeline owners and operators. Conventional gravity sewer inspection methods (e.g. visual inspection, sonar and laser profiling) do not provide a full condition assessment of most pressure pipes since the loss of structural capacity cannot be quantified with these methods. As part of the condition assessment of force mains, leak and gas pocket detection is crucial since their presence is often a preliminary indicator of a potential failure location. Gas pockets in force mains are of significant concern as they are the primary failure mode for these critical pipelines. Hydrogen sulfide gas within the wastewater may be converted to sulfuric acid by bacteria in the slime layer on the pipe wall, which may cause corrosion and eventual breakdown of the pipe’s exposed surface.

SmartBall Insertion
Tool Tracking

Based on Pure Technologies’ assessment of over 8,000 miles of pressure pipe, including over 400 miles of wastewater force mains, our clients have found that pressure pipes typically do not deteriorate or fail systematically along their full length. Rather, pipe condition is usually related to localized problems due to design, manufacturing, installation, environmental, operational, or maintenance factors. By identifying the localized areas of deterioration and performing “surgical” repair techniques, utilities can manage their pressure pipelines for often less than 10% of the replacement cost.

After completion of the SmartBall inspection and other screening techniques such as pressure transient monitoring and external corrosion evaluations, the District and Jason Consultants have identified locations for external evaluation for several force mains to determine the condition of the pipe wall. These evaluations will be conducted using various techniques including visual, physical measurements, and ultrasonic testing with the goal of District staff providing most of these inspection services. Jason Consultants will then work with District staff to deliver force main specific management strategies including:

  • Repair, rehabilitation, or replacement recommendations;
  • Recommendations for modifications to the force main including future inspection needs and air release valves;
  • Re-evaluation of force main risk based on inspection results and condition assessment;
  • Remaining useful life estimations;
  • Emergency response planning for high and medium risk force mains.

Learn More

Sewer access

Sewer Force Main Inspection

Pure Technologies has the complete portfolio for sewer force main and large diameter gravity main inspection. As the trusted global leader, we have successfully inspected thousands of miles of pipeline.

Assess & Address Pipeline Management Program

Assess & Address Pipeline Management Program

Pure Technologies is helping utilities manage their buried infrastructure through its Assess & Address which can often be implemnented for only a fraction of the capital replacement cost

Case Study

Case Study: Baltimore County Department of Public Works

Baltimore County Department of Public Works (DPW)has been working with Pure Technologies to manage its force main inventory since 2011. Through proactive and regular assessment, DPW has been able to identify select areas of pipeline deterioration, thereby avoiding unnecessary pipe replacement.

To proactively address its large-diameter Prestressed Concrete Cylinder Pipe (PCCP) for deterioration, Tampa Bay Water (TBW) completed a leak and gas pocket survey and electromagnetic (EM) inspection of the South-Central Hillsborough Regional Wellfield Transmission Main in April 2013.

TBW maintains a large pipeline network that serves the Tampa Bay and St. Petersburg metropolitan area and includes approximately 80 miles of PCCP. The pipeline inspections were completed on 8 miles of 42, 48 and 54-inch PCCP that convey wellfield supply to the Lithia Water Treatment Facility.

A leak and gas pocket survey was completed using SmartBall® technology as a forerunner for the EM condition assessment and provided TBW with an initial condition of the pipeline. The inspection was very successful, with the tool travelling steadily throughout and reaching all the tracking points. Several members of Tampa Bay Water were on hand at the retrieval to see the tool in action.

Early identification and repair of leaks can reduce Non-Revenue Water, but also helps determine the baseline condition of a pipeline, since leaks can be an indication that a pipeline might fail. In addition, locating and eliminating gas pockets reduces pressure on the pumps that are attempting to push water past a pocket. As pockets grow in size, they can significantly affect the flow of water and capacity of the pipeline if not released.

PipeDiver Team
Tool Insertion

In the following days, TBW prepared for the EM inspection using PipeDiver®, a free-flowing EM tool that is able to accurately locate and quantify broken wire wraps in PCCP. The wire wraps in PCCP act as the main structural component; broken wraps are the main indication that this type of pipe will eventually fail.

After completing inspection and analysis, Tampa Bay Water will have a wire wrap break estimate for each section of PCCP on this pipeline, which will allow them to make a prioritized rehabilitation and re-inspection plan.

The PipeDiver inspection was completed on schedule with the tool tracked throughout and retrieved successfully at the Lithia Water Treatment Plant. Results from both inspections are currently being analyzed for Tampa Bay Water.

 

Learn More

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

Free-Swimming Pipeline Inspection

Electromagnetic Pipeline Inspection

Electromagnetic testing provides the best condition assessment data for large diameter PCCP (AWWA C301) and BWP (AWWA C303) pressure pipelines.

The York-Peel Feeder Main provides a critical supply of water for residents and businesses in The Regional Municipality of York. The pipeline is made of 1800-mm (72-inch) Pre-stressed Concrete Cylinder Pipe (PCCP) and runs roughly 25 kilometres (about 16 miles) through both Peel Region and York Region.

Although the pipeline was built in 2005 and is relatively young, York Region conducted two proactive inspections in April 2013 using advanced inline technologies to locate leaks, gas pockets and structural deterioration. Multiple stakeholders, including Peel Region, the Ontario Clean Water Authority (OCWA), York Region and local municipalities necessitated careful planning to minimize service disruption for end users.

Regular leak detection can help utilities identify leaks that may not be visible at the surface. These proactive repairs can help to reduce their non-revenue water and prevent pipeline failures, as leaks are often a precursor to pipeline failure. Locating and eliminating gas pockets also helps to reduce pressure on pumps attempting to pump water past an air pocket. As pockets grow in size, they can adversely affect the flow and capacity of a pipeline.

The SmartBall® leak detection tool was used to assess the pipeline for leaks and gas pockets and is often used as a precursor to electromagnetic (EM) condition assessment of PCCP pipelines. The SmartBall platform is a non-destructive, free-swimming tool that measures the acoustic activity associated with leaks and air pockets.
The tool was launched just downstream of the Airport Road Pump Station in Peel Region and was tracked successfully throughout the inspection and retrieved at the Maple Reservoir in York Region.

An EM inspection was completed on the pipeline using PipeDiver®, a free-swimming EM tool used to identify and quantify wire breaks in PCCP. The EM sensor collects a magnetic signature reading as the PipeDiver traverses the pipeline and identifies anomalies produced by wire breaks in PCCP, which are the main indicator that a pipe of this type will eventually fail. The tool is ideal for performing a baseline inspection of a PCCP pipeline that cannot be removed from service.

During the inspection, the PipeDiver was tracked through the pipeline as it passed 17 Butterfly Line valves of various designs and sizes. For retrieval of the tool at the Maple reservoir, a tethered robotic device was used in favour of a trained diver, which increased the safety and efficiency of the retrieval process.

York Region was pleased with the inspection process and will be completing follow up engineering analysis as the leak and gas pocket survey and EM results become available.

 

Learn More

Free-Swimming Pipeline Inspection

Electromagnetic Pipeline Inspection

Electromagnetic testing provides the best condition assessment data for large diameter PCCP (AWWA C301) and BWP (AWWA C303) pressure pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

There are several methods of locating leaks on water pipelines.

Non-invasive methods, such correlators or listening sticks, work very well on small-diameter distribution mains but often lack the accuracy needed to address large pipes as the sound of a leak does not travel as well as pipe diameter increases.

Infographic about inline leak detection

Conversely, inline leak detection methods aren’t well suited for distribution mains due to pipe size and complexity, but are very effective in accurately locating leaks on large-diameter transmission mains because they bring the leak detection sensor directly to the source of the leak, unlike non-invasive systems.

One of the major challenges utility operators deal with is accurate location of leaks on critical large-diameter pipelines. These pipelines – which are often a crucial supply of water for a large number of customers – sometimes run beneath busy streets, meaning operators cannot afford to shut down service and excavate large portions of a city street to search for suspected leaks, making precise location very crucial.

Inline leak detection tools can locate leaks with close location accuracy, usually within 10-feet or closer, because the leak detection sensor passes the leak location directly, therefore providing a very accurate location estimate. Tethered systems that are controlled by a ground level operator are the most accurate in locating leaks, since the technology operator can control the leak sensor and verify leaks in real time.

By using inline leak detection methods that precisely locate leaks, operators can effectively reduce shutdown and excavation times, allowing for fiscally responsible and efficient repair projects that don’t disrupt busy metropolitan areas.

Another benefit of inline leak detection methods is their accuracy in estimating the size of a leak. The results from an inline leak detection survey provide a precise water loss estimate for each suspected leak. This allows pipeline operators to decide whether to excavate a leak immediately or defer the repair of a small leak in the interim.

This helps operators with large-diameter pipelines in busy metropolitan areas because repair projects can be costly, disruptive, and sometimes unnecessary if the cost of the project outweighs the benefit of repairing the leak. With the location and size of the leak known, operators can create repair schedules and prioritize rehabilitation projects to avoid unnecessary service disruptions.

In order to proactively address water loss on its water transmission mains, Sweetwater Authority completed a SmartBall® leak detection survey in January 2013 on over 5 miles of a 36-inch steel water transmission main to locate leaks and gas pockets. The tool located two acoustic anomalies indicating small and medium sized leaks on the pipeline. No pockets of trapped gas were located.

The two locations were reviewed by Sweetwater Authority staff and it was determined that one of the leaks was located at an existing valve to an adjacent pipeline. This valve is used for isolation between the two pipelines so there was no water coming from the pipe into the surrounding environment. However, the other leak, which was the small leak, was validated through excavation by Sweetwater. It was quickly repaired and this critical pipeline was placed back into service.

The SmartBall platform is a non-destructive, free-swimming tool that measures the acoustic activity associated with leaks and gas pockets in pressurized pipelines. When acoustic anomalies are present, the data is analyzed to determine if it is a leak, gas pocket, or just an external sound. The tool is tracked using receivers that are mounted along the pipeline at strategic locations; Sweetwater and Pure tracked the tool successfully at all six receivers during this inspection.

Insertion Site
Extraction Site

Regular leak detection surveys can help utilities identify leaks that may not be visible at the surface. By repairing leaks utilities can reduce their Non-Revenue Water and prevent pipeline failures, as leaks are often a preliminary indication that a pipeline will eventually fail.

Location and elimination of gas pockets is also beneficial as it reduces pressure on pumps that are attempting to pump water past a gas pocket. As these pockets grow in size, they can significantly reduce the flow and capacity in a pipeline if they are not released.

In addition to reducing water loss in the pipeline, the leak detection survey will provide valuable condition data that could be used in future condition assessment projects.

 

Learn More

Pipeline leak detection systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

In January 2013, Lake Huron Primary Water Supply System (LHPWSS) verified the results of a condition assessment project completed in October 2012 that included leak detection and electromagnetic (EM) assessment. The verification allowed LHPWSS to proactively repair of three sections of Prestressed Concrete Cylinder Pipe (PCCP) along its major transmission main.

While the majority of Pipeline A – LHPWSS’s major water transmission that runs 47 kilometers (29 miles) – was found to be in good condition, the inspection showed seven pipe sections had a relatively high level of distress. Of these seven pipes, two were located within a twinned section and therefore had a lower consequence of failure.

The remaining five high-distress pipes were located within 3.5 kilometers (2 miles) of each other and are in the same vicinity of failures that occurred in 2010 and 2012. LHPWSS has since verified and replaced the three most distressed pipes from the five that didn’t have redundancy to mitigate the risk of another failure.

Although the pipeline is primarily in good shape, the identification of several highly-distressed pipe sections has allowed LHPWSS to proactively plan targeted rehabilitation to ensure the continued delivery of quality service and the prevention of a major pipeline failure.

Verification Tool
Excavated Pipe

By determining the baseline condition of their entire primary large-diameter pipeline, LHPWSS now has a better understanding of the overall health of their system and can make informed decisions as they move forward with their pipeline management program and the rehabilitation of their assets.

LHPWSS serves about 500,000 people in eight different municipalities in the London Region and provides about 170 million liters (44 million gallons) of water per day. Its major transmission main, the Lake Huron Pipeline A, runs from the Lake Huron Water Treatment Plant near Grand Bend, ON to a terminal reservoir located near the community of Arva, North West of the City of London and features mostly 1200-millimetre (48-inch) Prestressed Concrete Cylinder Pipe (PCCP).

 

Learn More

 Electromagnetic Pipeline Inspection

Electromagnetic Pipeline Inspection

Electromagnetic testing provides the best condition assessment data for large diameter PCCP (AWWA C301) and BWP (AWWA C303) pressure pipelines.

 SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

Sydney Water is completing a five-year international research project to examine why and when critical water mains burst.

The goal of the research is to aid the development of advanced condition assessment and failure prevention techniques that can help Sydney Water determine the remaining useful life of their pipelines.

Current and emerging condition assessment technologies have been evaluated and tested by Sydney Water on the world’s largest test bed pipe to provide data and research for the project.

SmartBall

SmartBall® Leak Detection, Pure’s free-flowing leak and gas pocket detection tool, was tested by Sydney Water for 80 kilometers on two trunk mains to identify the most accurate and cost-effective ways to detect leaks on large-diameter trunk mains. Many leak detection technologies designed for small-diameter distribution mains are ineffective on large-diameter pipe.

While leaks on large-diameter pipes are less common than leaks on small-diameter systems, they often have losses in excess of 10 percent of the total volume carried. By finding and repairing leaks on large-diameter pipes, utilities can achieve higher reductions in Non-Revenue Water.

Sydney Water will spend $16 million on this research project, with about $6 million devoted to leak management for 2012 and 2013, including more SmartBall technology trials to reduce water loss on critical trunk mains.

 

Learn More

 Pipeline Leak Detection Systems

Pipeline Leak Detection Systems

Highly accurate inline leak detection systems that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on larger diameter water and wastewater transmission mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in live water mains.

Sahara® - Leak & Gas Pocket Detection

Sahara® – Leak Detection for Water Trunk Mains

Leak and gas pocket detection using a tethered acoustic sensor allows for real-time results, and maximum control and sensitivity.

Abstract

Recently the industry has been emphasizing broken prestressing wires as a basis for the management of Prestressed Concrete Cylinder Pipe (PCCP). The approach includes: evaluating broken wires, establishing a threshold level of broken wires for repair, and repairing only sections that exceed the threshold.

While evaluating wire breaks are an important part of PCCP management, it is important to acknowledge additional factors beyond wire breaks. By acknowledging additional condition factors, limitations of wire break assessment, and considering other rehabilitation approaches, there may be a more sustainable PCCP management approach (or combination of approaches). The approach may reduce risk and be more sustainable in terms of costs (current and future).

For some areas, the San Diego County Water Authority found the comprehensive rehabilitation approach, steel relining of PCCP, to be more sustainable in terms of costs. In addition, the approach significantly reduced the risk of a pipeline failure. However, in other areas, a localized, as-needed repair approach, such as Carbon Fiber, was more sustainable in terms of costs.

Authors

  • Nathan D. Faber, P.E., San Diego County Water Authority, Escondido, CA, USA.
  • Martin R. Coghill CEng MICE, Jacobs Engineering Group Inc., San Diego, CA, USA.
  • John J. Galleher, P.E., Pure Technologies, San Diego, CA, USA.

Baltimore County Department of Public Works (DPW) wrapped up a busy two-month inspection schedule in November 2012 after completing ten force main inspections using the SmartBall®, PipeDiver® and PureRobotics® technology platforms.

Twenty-three total inspections took place on ten different Prestressed Concrete Cylinder Pipe (PCCP) force mains over the inspection period, requiring extensive planning and organization between DPW and Pure.

SmartBall leak detection inspections were completed on nine force mains as part of the overall condition assessment of PCCP force mains. Initial leak and gas pocket detection is crucial in condition assessment, since the presence of leaks or gas pockets is often a preliminary indicator of a potential failure location.

Gas pockets in force mains are of significant concern as hydrogen sulfide gas within the wastewater may be converted to sulfuric acid by bacteria in the slime layer on the pipe wall, which may cause corrosion and eventual breakdown of the pipe’s exposed surface.

For structural condition assessment of the force mains, Pure Technologies used PipeDiver technology for six inspections and the PureRobotics platform for three inspections.Two electromagnetic platforms were used for the inspections to meet the different operational challenges at each force main.

Both tools identify areas of distress and quantify the amount of estimated wire breaks on PCCP force mains while allowing them to remain in service. Having the line remain in service is often important for force main condition assessments since most lack redundancy and the ability to be shut down for inspection.

In total, DPW and Pure Technologies completed just over 15 miles of SmartBall leak detection, almost 11 miles of PipeDiver condition assessment, and about 3 miles of robotics inspection. The pipe diameters varied for each force main, ranging from 16-inch to 42-inch PCCP.

Baltimore County is inspecting their force mains after entering into a Consent Decree brought forth by the U.S. Department of Justice, the Maryland Department of the Environment (MDE) and the Environmental Protection Agency (EPA) in September 2005. The consent decree stipulated that Baltimore County inspect all force mains in its collection system with one or more methodologies appropriate to the specific characteristics of each force main.

Although the Consent Decree stipulates that the force mains be inspected, it allowed Baltimore County the flexibility to specify the method or technology at the time the inspections are performed.

The Baltimore County DPW has taken this opportunity to go beyond a minimalist approach, choosing to inspect its force main inventory with advanced non-destructive condition assessment technologies, reaffirming their ongoing commitment to providing reliable service and preventing pipeline failures.

DPW’s sewer force main inspection program was featured in the November issue of Trenchless Technology. Click here to see the article.

 

Learn More

Sewer inspection hole

Sewer Force Main Inspection

Pure Technologies has the complete portfolio for sewer force main and large diameter gravity main inspection. As the trusted global leader, we have successfully inspected thousands of miles of pipeline.

Aqua Environmental (subsidiary of Pure Technologies) recently completed a large-diameter leak detection program using SmartBall® on behalf of a client in the Northern Territory of Australia.

The contract covered over 240 kilometres of water pipes ranging in size from 80-mm to 750-mm and utilised SmartBall inspection technology for the larger diameter mains (375-mm and above). Four successful SmartBall inspections were completed totalling 42 kilometres.

While no actual leaks were found during the inspections, the SmartBall was able to detect all the simulated leaks arranged by the client to test the accuracy of the tool. The project was also successful in providing the client with an accurate assessment of the leakage on their large-diameter pipes, which will assist in the future direction of their leakage strategy.

While on site, demonstrations of both conventional acoustic leak detection technology and SmartBall insertion and extraction were held for the client.

 

Learn More

SmartBall Australia
Aqua Truck
Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

Sahara® - Leak & Gas Pocket Detection

Sahara® – Leak Detection for Water Trunk Mains

Leak and gas pocket detection using a tethered acoustic sensor allows for real-time results, and maximum control and sensitivity.

In October 2012, Pure Technologies completed its first SmartBall® run in Casablanca, Morocco on 2 kilometers (1.2 miles) of 1000-mm (39-inch) Prestressed Concrete Pipe (PCP).

SmartBall was successful in precisely detecting and locating one leak along the transmission main and was tracked throughout the entire inspection by SmartBall Receivers (SBR) installed along the pipeline.

SmartBall is a free-flowing acoustic leak and gas pocket detection tool that is inserted into live pipelines. The tool measures acoustic anomalies associated with leaks and gas pockets, which are then analyzed and verified by data analysts.

Morocco SmartBall

The run in Casablanca was completed by the partnership of Pure Technologies and the Suez Environmental Group on behalf of Lydec, which operates more than 4,600 kilometers (2,850 miles) of pipeline in Casablanca.

Lydec is very pleased with the results of the inspection, as regular leak detection, condition assessment and monitoring of their pipelines is a main priority for the utility. Lydec has been very successful in saving water through various leak detection processes; saving 34 million m3 per year between 1997 and 2011.

 

Learn More

Sahara® - Leak & Gas Pocket Detection

Sahara® – Leak Detection for Water Trunk Mains

Leak and gas pocket detection using a tethered acoustic sensor allows for real-time results, and maximum control and sensitivity.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming inline leak detection technology designed to operate in a live water mains.

Pure Technologies completed a 47 kilometer (29 miles) inspection of the Lake Huron Primary Water Supply System’s Pipeline A using the SmartBall® and PipeDiver® inspection platforms in October, 2012.

After two successful inspections of the 1200-millimetre (48-inch) water transmission main, LHPWSS commended Pure’s staff for their effort.

“The staff members at Pure Technologies were extremely professional and their level of expertise with respect to PCC pipe is phenomenal. Truly, they are leaders in their own field,” said Brian Lima, P.Eng., Capital Projects Manager for the LHPWSS.

A video overview of the project can be seen below.

PipeDiver Insertion
SBR Tracking

Pure was contracted by LHPWSS for a condition assessment of its transmission mains after a failure to a 1200-mm (48-inch) pipe in May, 2012. This was the fourth failure on the system; the others were in March 2010, 1988 and 1983.

After the most recent failure, LHPWSS wanted to take a proactive approach in inspecting and maintaining its water transmission mains to ensure quality service to its customers. The information collected from this condition assessment will allow LHPWSS to understand the baseline condition of its pipeline, as well as selectively rehabilitate pipes to minimize capital costs.

Before the condition assessment project, Pure and LHPWSS – which serves several member municipalities – developed a comprehensive project plan to ensure that all stakeholders understood the work involved and each group’s responsibilities, as well as how the inspections would impact each stakeholder.

Prior to the inspections, Pure installed 33 SmartBall receivers (SBR) along the pipeline to track both inspection platforms as they travelled through the pipeline.

For the SmartBall inspection, Pure’s team mobilized at the Lake Huron Water Treatment Plant very early in the morning to launch the tool. A small portion of the pipeline was isolated and depressurized to allow for manual insertion of the SmartBall. Once the tool was in position, the pipeline was put back into service and the SmartBall started travelling down the pipeline. After traversing 47 kilometers, it was retrieved in the Arva Terminal Reservoir by commercial divers.

After a day off to prepare the PipeDiver and discuss any lessons learned from the SmartBall inspection, Pure’s staff returned to the Lake Huron Water Treatment Plant for the PipeDiver Inspection.

“The launch, tracking and retrieval of the PipeDiver is very similar to the SmartBall. So the SmartBall was an excellent trial run for the PipeDiver,” said Cameron White, Program Manager at Pure Technologies. “The PipeDiver is a larger tool and is generally harder to get in and out of the pipe, so the SmartBall run gave us good practice for the PipeDiver.”

The PipeDiver tool was also retrieved at the Arva Terminal Reservoir with the use of commercial divers.

Both tools were tracked successfully at all SBR locations during the inspections. In addition, Pure provided the client and its member municipalities with real-time updates using an online interactive map and messaging system after it passed each tracking point.

“It’s been a pleasure working with [Pure] and we look forward to a long working relationship as we continue our endeavors into inspection and ongoing monitoring of our system,” added Lima.

The Lake Huron system serves about 500,000 people over eight municipalities in the London area and pumps about 170 million litres of water per day. The transmission main, constructed in 1966, runs approximately 47 kilometers from the Lake Huron Water Treatment Plant near the community of Grand Bend, to a terminal reservoir located in the community of Arva, North West of the City of London.

 

Learn More

Free-Swimming Pipeline Inspection

Electromagnetic Pipeline Inspection

Electromagnetic testing provides the best condition assessment data for large diameter PCCP (AWWA C301) and BWP (AWWA C303) pressure pipelines.

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

In June 2012, Pure Technologies (China) completed a SmartBall leak detection project in conjunction with Jalur Cahaya Sdn. Bhd. (JC) that helped address the Non-Revenue Water (NRW) problem in the state of Selangor, Malaysia, by locating several leaks in the water system.

The total inspection spanned about 5 kilometres (3 miles) on two water transmission mains, locating 11 total leaks. Pure inspected about 1.5 kilometers (1 mile) of the Kampung Sungai Kertas transmission main, made up of 300-millimetre (12-inch) asbestos cement and mild steel, and just over 3 kilometres (2 miles) of the Jalan Raja Musa main, a 700-millimetre (28-inch) mild steel pipeline.

SmartBall Access Point

JC is a water engineering services company that focuses on reducing NRW in Malaysia. The successful SmartBall project reaffirms their commitment to reducing NRW in Malaysia with continuous and effective leak detection projects.

The Kampung Sungai Kertas main inspection had 6 SmartBall Receiver locations to ensure quality tool tracking and accurate leak locations. The inspection identified 9 leaks in the system, 2 of which were large leaks. Since project completion, JC revealed to Pure that 2 of the 9 leaks were artificial and used to test the sensitivity of SmartBall. The Jalan Raja Musa main inspection used 5 SBR locations and was very successful, locating 2 small leaks in the system.

Immediately following the inspections, JC excavated and repaired all the leaks identified, and are very satisfied with the results of the verifications. Flow measurements before and after repairs were also carried out on the Kampung Sungai Kertas pipeline, showing the fixed leaks reduced leakage by 360,000 litres (95,000 gallons) per day.

 

Learn More

Smartball- Leak and Gas Pocket Detention

SmartBall® – Leak Detection for Water Trunk Mains

SmartBall® is an innovative free-swimming in-line leak detection technology designed to operate in a live water mains.

Sahara® - Leak & Gas Pocket Detection

Sahara® – Leak Detection for Water Trunk Mains

Leak and gas pocket detection using a tethered acoustic sensor allows for real-time results, and maximum control and sensitivity.

Water scarcity issues are a major problem in many parts of the world affecting quality of life, the environment, industry, and the economies of developing nations. Touted as “the next oil,” water is the most precious resource on earth. We need it to drink, to grow food, sanitation as well as running various industrial needs such as power and manufacturing.

Yet even as precious as water resources are, there is a considerable shortage of water in the world. Causes of water scarcity vary from natural causes such as climate change and drought to human causes such as demand over stripping supply, population growth, water quality, and resource allocation.

Help overcome water scarcity with leak detection

For a prime example of how human factors contribute to water scarcity, we need not look any further than the state of the earth’s water distribution infrastructure. Most of the water infrastructure in the world was installed over a century ago when the earth supported a much smaller population and we didn’t have such a dependence on modern industrial comforts.

Leaks in Aging Pipeline Infrastructure

It is estimated that worldwide over 6 billion gallons of water is being lost every day through leaks in aging pipeline infrastructure. On average Pure inspections have shown 1.1 leaks per mile of large diameter pipe in North America and 2.2 leaks per mile in Europe, England, Middle East and Africa. The average volume of a leak is 40,000 gallons per day.

According to the US Geological Survey, in North America alone, there are over one million miles of water pipelines and aqueducts. As this water infrastructure continues to age and become over burdened by industry and population growth, the contribution to water scarcity also occurs.

Pure offers water pipeline owners the most accurate and trusted leak detection system which allows operators to become more proactive by systematically seeking and abating water leaks in their water distribution systems. By detecting and repairing leaks, utilities don’t only combat water scarcity but also increase efficiency, protect surrounding assets, and protect the environment.

Learn More

Pipeline leak detection systems

In-Line Leak Detection 

Non-destructive, in-line tools that can detect leaks and gas pockets in operational pipelines. These systems are used primarily on large-diameter water and pressurized wastewater mains of all materials as well as oil & gas pipelines.

Smartball- Leak and Gas Pocket Detention

Smartball- Leak and Gas Pocket Detention 

Leak and gas pocket detection services using a free-swimming acoustic sensor for “straight-shot” inspections.

Sahara® - Leak & Gas Pocket Detection

Sahara® – Leak & Gas Pocket Detection

For complex large diameter networks, Sahara® leak and gas pocket detection services uses a tethered acoustic sensor allows for real-time results, and maximum control and sensitivity.

Introduction

In the past, the focus for leak detection programs in water delivery systems has been primarily on distribution (reticulation) networks and service connections. Even today, trunk main leaks tend to be addressed only when there is a pipe rupture or when there is visual evidence of the leak above ground. So are leaks from trunk mains a problem?

The introduction of a new leak detection technology, called SmartBall®, has the potential to resolve the uncertainty about the rate of loss, if any, from trunk mains. Following two years of development, the system has been available commercially since June 2007 and experience to date has demonstrated that it a valuable tool for identifying, locating and quantifying leakage. Results indicate that trunk main leakage is indeed a concern for many agencies, and that most leaks are not evident from visual inspection or metering.

Introduction

A significant percentage of the United States force mains have been in use for several decades and never been assessed or proactively managed. To safely rely on these pipelines, their condition should be periodically checked to ensure there are no locations susceptible to failure.

In addition, many wastewater agencies are faced with EPA consent decrees that require condition assessment of force mains. As a result, many agencies are now faced with the daunting task of assessing their sewer force mains—a task that until recently was often not feasible due to operational constraints. However, Pure Technologies continues to improve technology and can now obtain a realistic assessment of a force main within the common constraints of most wastewater agencies.

Authors

  • Michael S. Higgins, P.E.; Pure Technologies, Columbia, MD, USA.